
Polyphonic Sound Event Detection

with Weak Labeling

Yun Wang

October 2017

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis committee:

Prof. Florian Metze, Chair (Carnegie Mellon University)
Prof. Alex Waibel (Carnegie Mellon University)

Prof. Alex Hauptmann (Carnegie Mellon University)
Dr. Aren Jansen (Google Inc.)

A thesis proposal submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Copyright c© 2017 Yun Wang

Abstract

Sound event detection (SED) is the task of detecting the type and the onset
and offset times of sound events in audio streams. It is useful for purposes
such as multimedia retrieval and surveillance. Sound event detection is
difficult in several aspects when compared with speech recognition: first,
sound events are much more variable than phonemes, notably in terms of
duration but also in terms of spectral characteristics; second, sound events
often overlap with each other, which does not happen with phonemes.

To train a system for sound event detection, it is conventionally necessary
to know the type, onset time and offset time of each occurrence of a sound
event. We call this type of annotation strong labeling. However, such
annotation is not available in amounts large enough to support deep learning.
This is due to multiple reasons: first, it is tedious to manually label each
sound event with exact timing information; second, the onsets and offsets of
long-lasting sound events (e.g. car passing by) and repeating sound events
(e.g. footsteps) may not be well-defined.

In reality, annotation of sound events often comes without exact timing
information. We call such annotation weak labeling. Even though it contains
incomplete information compared to strong labeling, weak labeling may
come in larger amounts and is well worth exploiting. In this thesis, we
propose to train deep learning models for SED using various levels of weak
labeling. We start with sequential labeling, i.e. we know the sequences of
sound events occurring in the training data, but without the onset and offset
times. We show that the sound events can be learned and localized by a
recurrent neural network (RNN) with a connectionist temporal classification
(CTC) output layer, which is well suited for sequential supervision. Then we
relax the supervision to presence/absence labeling, i.e. we only know whether
each sound event is present or absent in each training recording. We solve
SED with presence/absence labeling in the multiple instance learning (MIL)
framework, and propose to analyze the network’s behavior on transient,
continuous and intermittent sound events.

As we explore the possibility of learning to detect sound events with
weak labeling, we are often faced with the problem of data scarcity. To
overcome this difficulty, we resort to transfer learning, in which we train
neural networks for out-of-domain tasks on large data, and use the trained
networks to extract features for SED. We make special effort to ensure the
temporal resolution of such transfer learning feature extractors.

i

Contents

1 Introduction 1
1.1 History and State-of-the-Art of SED 3
1.2 Corpora for Sound Event Detection 6
1.3 Contributions of This Proposal 10

2 Review of Deep Learning Techniques 12
2.1 Feed-Forward Neural Networks 12
2.2 Recurrent Neural Networks (RNN) 16
2.3 Convolutional Neural Networks (CNN) 21
2.4 Connectionist Temporal Classification (CTC) 22

3 Sound Event Detection with Sequential Labeling 25
3.1 Monophonic SED with Strong Labeling 26
3.2 Polyphonic SED with Sequential Labeling 27

3.2.1 Training the CTC-RNN 28
3.2.2 Quantitative and Qualitative Evaluation 30

3.3 Improving the Acoustic Features with Transfer Learning . . . 31
3.3.1 The Structure of SoundNet and Its Variants 33
3.3.2 Training SoundNet and Its Variants 35
3.3.3 SED Using Transfer Learning Features 37

3.4 Error Analysis . 40
3.5 Proposed Work . 42

3.5.1 Semi-Supervised Training with More Data 42
3.5.2 Better Exploiting Long Sound Events 43
3.5.3 Improving the Temporal Localization of CTC 43
3.5.4 Training a Transfer Learning Feature Extractor that

Maintains Temporal Resolution 44
3.5.5 Comparing and Combining Different Transfer Lear-

ning Features . 44

4 Sound Event Detection with Presence/Absence Labeling 46
4.1 Pooling Functions in Multiple Instance Learning 47

4.1.1 Motivation of the Max and Noisy-Or Pooling Functions 47

ii

4.1.2 Relationship Between the Noisy-Or Pooling Function
and CTC . 48

4.1.3 The Gradient Flow . 51
4.2 Proof-of-Concept Experiments with Speech Recognition . . . 52

4.2.1 Experiment Setup . 52
4.2.2 Experiment Results 54
4.2.3 Analysis: Why Noisy-Or Pooling Fails 56

4.3 Proposed Work: Learning with Presence/Absence Labeling
on Large Data . 60

5 Contributions and Timeline 62
5.1 Contributions of This Proposal 62
5.2 Potential Applications . 63
5.3 Timeline . 64

Bibliography 65

List of Figures

1.1 Example sound events. 2
1.2 A categorization of sound events. 2
1.3 Some statistics of the Noiseme corpus. 8

2.1 Common activation functions used in neural networks. 13
2.2 The effect of momentum in gradient descent. 15
2.3 The structures of a feed-forward neural network, a recurrent

neural network (RNN), and a bidirectional RNN. 17
2.4 The structures of an LSTM cell and a gated recurrent unit

(GRU). 19
2.5 The trellis for computing the CTC loss function. 23
2.6 The “peaky” output of a CTC speech recognition network. . 24

3.1 Structure of the CTC-RNN for polyphonic SED with sequen-
tial labeling. 28

3.2 An example of alignment hinting. 29
3.3 Training curves of the CTC-RNN. 31
3.4 Example predictions of the CTC-RNN. 32
3.5 The architecture of SoundNet. 33
3.6 Training curves of the variants of SoundNet. 36
3.7 Training curves of the CTC-RNN with transfer learning

features. 37
3.8 The activations of the higher layers of SN-F and SN-R on a

validation recording. 39
3.9 The miss and false alarm rates of each sound event type. . . . 41

4.1 CTC state graphs for one and three label sequences. 49
4.2 Evolution of the cross-validation PER of the various systems

on the TEDLIUM corpus. 55
4.3 The frame-wise predictions of the various systems on an

example utterance. 57

iv

List of Tables

1.1 A summary of corpora available for SED. 9

2.1 Output layer activation functions and loss functions suitable
for different types of machine learning tasks. 14

3.1 Detailed information about the layers of SoundNet and its
two variants, SN-F and SN-R. 34

3.2 SED performance when using transfer learning features. . . . 38

4.1 The optimal hyperparameters and phoneme error rates of the
various systems on the TEDLIUM corpus. 55

4.2 The predicted phoneme sequences of the various systems on
an example utterance. 56

5.1 Timeline for the proposed work. 64

v

List of Abbreviations

BPTT Back-propagation through time

CASA Computational auditory scene analysis

CLEAR Classification of events, activities and relationships

CMU Carnegie Mellon University

CNN Convolutional neural network

CTC Connectionist temporal classification

DCASE Detection and classification of acoustic scenes and events

DNN Deep neural network

ESC Environmental sound classification

FA False alarm

GMM Gaussian mixture model

GRU Gated recurrent unit

HMM Hidden Markov model

KL Kullback-Leibler (divergence)

LIUM Laboratoire d’Informatique de l’Université du Maine

LSTM Long short-term memory

MED Multimedia event detection

MFCC Mel-frequency cepstral coefficients

MIC Multiple instance classification

MIL Multiple instance learning

mi-SVM Multiple instance support vector machine

MSE Mean squared error

NIST National Institute of Standards and Technology

NMF Non-negative matrix factorization

PCA Principal component analysis

ReLU Rectified linear unit

RNN Recurrent neural network

SED Sound event detection

SGD Stochastic gradient descent

SMI Standard multiple instance (assumption)

SN-F SoundNet, fully connected

vi

SN-R SoundNet, recurrent

SNR Signal-to-noise ratio

SVM Support vector machine

TED Technology, Entertainment, Design

TEDLIUM (see TED and LIUM)

TER Token error rate

TREC Text Retrieval Conference

TUT Tampere University of Technology

WER Word error rate

YFCC Yahoo Flickr Creative Commons

Chapter 1

Introduction

The environment of our daily life is filled with various sound events, such
as cars passing by in the streets, or doors opening and closing in the office.
These sound events provide us with a tremendous amount of information
about the surroundings, and our auditory system is surprisingly good at
separating and recognizing them. If an intelligent system aims at interacting
with humans and the environment in a natural way, it must be able to
recognize and understand sound events.

The procedure of a machine turning the ambient sound signal into a
meaningful representation is called computational auditory scene analysis
(CASA) [1]. CASA involves several related tasks, such as acoustic scene
recognition, sound event detection, and source separation. These tasks are
progressively harder: acoustic scene recognition only requires determining
the type of the environment (e.g. office, restaurant, train); sound event
detection requires the detection and classification of each individual sound
event; source separation requires separating sound events in a mixed signal
into clean audio streams. These tasks are also closely related and can
facilitate each other: knowing the acoustic scene reduces the uncertainty
in the distribution of sound events, while the types of the sound events
are an important source of information about the acoustic scene; having
sound events separated from a mixture makes their recognition easier, while
knowing the spectral characteristics of sound events also makes it easier to
separate them.

This proposal deals with the task of sound event detection (SED). It
entails both classification and localization, i.e. we need to recognize the
type as well as determine the onset and offset times of each sound event
occurrence. We consider a broad range of sound events in this proposal,
with some examples shown in Fig. 1.1. Sound events can be categorized
from a variety of aspects. They may originate from various sources (e.g.
human, animals, machinery, nature), and these sources may be either fixed
or moving. In terms of spectral characteristics, sound events may be either

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Example sound events: singing, dog barking, ambulance siren,
wind.

Figure 1.2: A categorization of sound events.

tonal (exhibiting distinct peaks in the spectrum, e.g. sirens) or noise-
like (with power spanning a broad frequency band in the spectrum, e.g.
cheering). In terms of temporal behavior, sound events may be transient,
continuous or intermittent. Transient sound events (e.g. gun shots) last for a
very short time, usually less than one second. Continuous sound events last
for a long duration, and they may either be stationary (e.g. engine noise) or
display varying frequency characteristics (e.g. music). Intermittent sound
events occur repetitively with short intervals in between, and they may either
exhibit a periodic pattern (e.g. footsteps) or occur at irregular intervals (e.g.
dog barks). Fig. 1.2 summarizes the categorization of sound events. We are
especially interested in the temporal behavior of sound events. At the end
of Chapter 4, we propose to automatically classify sound events as transient,
continuous or intermittent.

Sound event detection is useful for many applications. For example, in
the automatic subtitling of TV dramas for hearing impaired people, it is
often necessary to include sound events (e.g. telephone ringing), because
they can be important for understanding the storyline. SED can also be
used for surveillance purposes, such as detecting the noise of a person falling
down stairs in hospitals [2], screams in subway trains [3], and gunshots [4]. A
more full-fledged application of SED is understanding activities taking place

CHAPTER 1. INTRODUCTION 3

in videos, such as a soccer game or a birthday party. This can be used to
generate metadata for the millions of videos uploaded by Internet users every
day, so they can be efficiently searched. This has been the goal of the yearly
NIST TREC Video Retrieval Evaluation1 since 2003. A number of systems
based on the detection of sound events, either learned in an unsupervised
fashion [5, 6] or defined by humans [7–9] have seen success on this task.

Sound event detection is made difficult by several factors. Besides the
great variability in their spectral and temporal characteristics, sound events
also often overlap in time, which means some of the events need to be
recognized in a signal-to-noise ratio (SNR) of less than 0 dB. Depending on
how overlapping sound events are dealt with, SED systems may be classified
into monophonic systems, which can only detect one sound event at a given
time, and polyphonic systems, which may generate overlapping detections.
This proposal is principally concerned with polyphonic SED.

Another difficulty in developing SED systems is the lack of data. This
is manifested in many aspects. On one hand, the amount of audio data
itself is scarce – most SED systems developed so far do not use more than
20 hours of audio. The amount of audio data also restricts the number of
sound event types that can be handled. Some corpora provide annotations
of dozens of sound event types, but many of these types are so rare that
they suffer from nearly zero recall. On the other hand, SED systems are
best trained when the type, onset time and offset time are fully known, but
it can be a tedious task to produce such strong labeling by hand. In reality,
annotation for SED may come in a weaker form, where we only know the
sequence of sound events, or even only whether each type of sound event
is present or absent. This proposal is interested in how we can utilize such
weak labeling.

In the remainder of this chapter, I will first review historical and
state-of-the-art approaches toward sound event detection, and analyze their
advantages and short-comings. Then I will introduce some corpora for SED
used in previous work as well as this proposal. At the end of this chapter,
I will outline the contributions of the work that I would like to propose for
my PhD thesis.

1.1 History and State-of-the-Art of SED

A multitude of models have been used to model sound events. An early
example is hidden Markov models (HMMs), e.g. [10, 11]. Each type of sound
events was modeled by a three-state HMM; left-to-right HMMs were used
for sound events with temporal structures, and ergodic HMMs were used
for relatively stationary ones. The distribution of acoustic feature vectors
belonging to each HMM state was modeled with Gaussian mixture models

1http://trecvid.nist.gov/

http://trecvid.nist.gov/

CHAPTER 1. INTRODUCTION 4

(GMMs). Viterbi decoding was employed to generate sequences of sound
events, and to locate the onset and offset times of each sound event instance.
HMMs can take advantage of event priors and “language models” to rule out
unlikely sound event sequences, but a drawback of HMMs is the inability to
deal with polyphony. A multi-pass decoding procedure was proposed in [12]
for polyphonic SED: at each frame in each pass of decoding, the Viterbi path
was prohibited from entering HMM states corresponding to sound events
that had already been detected at that frame in previous iterations. With
multi-pass decoding, HMMs were able to produce polyphonic detections, but
they still could not model how overlapping sound events affect the acoustic
characteristics of each individual sound event.

To explicitly deal with the overlapping of sound events, researchers
have resorted to source separation techniques, such as non-negative matrix
factorization (NMF) [13]. In NMF, the non-negative spectrogram X of a
mixture signal is decomposed into the product of a basis matrix W and
a gain matrix H, both with non-negative elements. The columns of the
basis matrix W can be understood as the spectra of stationary sound events
or sub-units of sound events with a variable temporal structure, and the
elements of the gain matrix H indicate how much each basis is activated at
each frame. NMF has been applied to SED in multiple ways. In [14, 15],
a test recording was first decomposed into four streams before monophonic
SED was conducted on each stream. The training recordings were also
decomposed into streams to separate overlapping sound events, in order to
train better acoustic models (HMMs) of each sound event type. In contrast,
[16] did not attempt to separate the acoustic signals of overlapping sound
events. Instead, the authors treated the annotation of a recording as a non-
negative matrix similar to a spectrogram, and learnt one basis matrix W1

for spectrograms and one for annotation matrices W2 jointly. If a basis
in W1 represented the spectrum of multiple overlapping sounds, then the
corresponding basis in W2 would have multiple entries with large values. For
a testing recording with a spectrogram X, a gain matrix H was estimated by
solving X = W1H, then the annotation matrix of the recording was given
by thresholding W2H. NMF is good at dealing with overlapping sounds;
however, it handles the spectrum of each frame independently, and fails to
model any temporal context.

With the rapid growth of deep learning techniques, neural networks
have become the mainstream solution to recognizing sound events. Neural
networks overcome many defects of previous approaches: they are no
longer restricted by the topology of HMMs, and they can take context into
consideration easily. More importantly, neural networks can be regarded
as trainable feature extractors, so they eliminate the need for complicated
feature engineering often required for HMMs, and their deep structure can
analyze the acoustic signal better than the simple matrix multiplication of
NMF.

CHAPTER 1. INTRODUCTION 5

The application of neural networks to SED started with feed-forward
neural networks. Feed-forward neural networks were used in [17, 18] to
classify isolated instances of sound events, taking the acoustic features
of many consecutive frames as input. This could be easily extended to
detecting sound events in audio streams by applying the network to sliding
windows of acoustic features and smoothing the decisions with a simple
median filter (e.g. [19]) or an HMM (e.g. [20]). The simple feed-
forward neural network in [19] yielded a significantly better polyphonic SED
performance than the HMM system with NMF pre-processing in [15].

Feed-forward networks treat all the input neurons independently, while
the spectrograms of sounds exhibit high correlation between neighboring
time-frequency units, just like images. To make better use of the spectro-
temporal locality of spectrograms, convolutional neural networks (CNNs)
were used to classify isolated events [21–26] as well as to detect sound events
in mixtures [27, 28]. The CNN in [28] again yielded superior performance
compared with the feed-forward network in [20].

CNNs make a decision for each frame based on the signal within a
temporal window around this frame, thereby making use of limited context.
Taking this a step further, recurrent neural network (RNNs) make frame-
wise decisions based on unlimited context. Even though some sound events
only last for a short period of time, this unlimited context can provide
information about the background they occur in, and make them easier
to recognize. In addition, the recurrent connections in the hidden layers
can function as an implicit “language model” of sound events, making it
unnecessary to smooth the frame-wise decisions. RNNs were successfully
applied to SED in [8, 29–31]. A more recent study [32] proposed a network
with convolutional layers followed by recurrent layers. Combining the ability
of CNNs to learn locally invariant filters and the power of RNNs to model
both long and short temporal dependencies, this network achieved better
polyphonic SED performances than either a CNN or an RNN alone on four
datasets.

All the methods presented above depend on strong labeling, i.e. the exact
onset and offset times of sound event instances. Such labeling can take a
formidable amount of effort to create. As a result, state-of-the-art research
on SED focus on weak labeling. This proposal deals with two types of weak
labeling: sequential labeling and presence/absence labeling.

In sequential labeling, we know the order of sound events happening
in each recording, but do not know the exact onset and offset times of
each sound event occurrence. This is the type of labeling most commonly
found for speech recognition, if we regard phonemes as equivalents of sound
events, and connectionist temporal classification (CTC) is the state-of-
the-art technique of exploiting such supervision. However, this type of
supervision has not been explored much in other tasks. One example is
[33], where the authors applied CTC to the detection of actions in video

CHAPTER 1. INTRODUCTION 6

recordings, given only the order of actions in each recording. For sound
event detection, we have seen preliminary success with CTC, which has
been published in [34, 35], and will be presented in detail in Chapter 3.

Another common form of weak labeling is presence/absence labeling : it
is only known whether each type of sound event occurs in each recording
or not. Because it is expensive to generate stronger forms of labeling,
recent large corpora (e.g. Google Audio Set) are often annotated with the
presence/absence of sound events, and SED with presence/absence labeling
is becoming a hot focus of research. Learning to detect sound events from
presence/absence labeling can be formulated as a special case of multiple
instance learning (MIL) [36]: instead of knowing the label for each instance,
the instances are grouped into bags, and labels are known for the bags only.
In the case of presence/absence labeling for SED, each recording may be
treated as a bag, and the frames (or segments) of the recording as instances
in the bag. The labels for the instances and those for the bags conform to
the standard multiple instance assumption: a bag is labeled as positive if
it contains at least one positive instance, and negative if it contains only
negative instances. One solution to SED with presence/absence labeling is
to train a recording-level classifier by aggregating (or “pooling”) frame-level
decisions. The “max pooling” function has been used in [37] and [38]; in
Chapter 4 of this work, we also study a “noisy-or” pooling function which has
been applied to object detection in images [39–41]. More complicated MIL
methods have been applied to SED as well, such as multiple instance support
vector machines (mi-SVM) [38] and manifold regularization on graphs [42].

1.2 Corpora for Sound Event Detection

Some works on sound event detection were first validated with the task of
classifying isolated sound events in clean environments. The ESC-502 corpus
[43] comprises 2,000 short clips of 5 seconds long, each clip containing an
instance of one of 40 sound event types. However, the controlled clean
environments are drastically different from the complex acoustic scenes
encountered in real life, so this corpus is of limited use.

A corpus of sound events recorded in real-life environments is Urban-
Sound [44]. It contains 1,302 recordings totaling 27 hours, and includes 3,075
instances of 10 types of sound events frequently occurring in cities, such as
car horns, sirens, and street music. A weakness of this corpus, however,
is that each recording is only annotated for one type of sound events. No
overlapping sound events are annotated, and therefore the corpus cannot be
used for studies on polyphonic sound event detection.

Several global competitions of sound event detection have been organi-

2“ESC” stands for “environmental sound classification”.

CHAPTER 1. INTRODUCTION 7

zed, including the CLEAR3 evaluation in 2006 and 2007 [45, 46], and the
DCASE4 challenge in 20135, 20166 and 20177. These competitions provide
standard corpora for SED, as well as benchmark results to compare with.
The audio data used in the CLEAR evaluations was seminars recorded in
meeting rooms. The corpus contained 3 hours of development data and
2 hours of evaluation data8. Twelve types of sound events commonly found
in meeting rooms were annotated; speech was also annotated but not eva-
luated. The evaluation data contained 1,454 target sound event instances.
The DCASE 2016 SED challenge [49] used 78 minutes (22 recordings) of
development data and 36 minutes (10 recordings) of evaluation data, broken
down into two environments: home and residential area. In the development
part of the data, 11 and 7 types of sound events were annotated in the two
environments respectively, with a total of 1,465 instances.

Even though these corpora are accepted as standard data for evaluation,
they are rather small for training SED systems, especially when the systems
use weak labeling. As a complement, researchers have also collected private
corpora of sound events. At the Tampere University of Technology (TUT) in
Finland, a corpus has been collected with a total duration of 1,133 minutes.
The corpus contains 103 recordings collected from ten real-life environments,
such as offices, restaurants, and buses. 61 types of sound events are
annotated with exact onset and offset times. The average number of events
active simultaneously, called the average polyphony level, is 2.539 [29]. This
corpus was first described in [50] and named “TUT-SED 2009” in [32], and
it has been used in a number of studies at TUT [11, 12, 15, 17, 19, 29, 32].

At Carnegie Mellon University (CMU), we have also been collecting and
annotating data for sound event detection. The corpus we have collected
is called the Noiseme corpus – the word “noiseme” was coined imitating
“phoneme” and “grapheme” since sound events are the basic units that make
up noises in an acoustic scene. This is the corpus that we use in most of our
experiments in Chapter 3. Since its first documentation in [51], the corpus
has had three versions, but most of our experiments used Version 2. The
size of the corpus has grown from 7.9 hours (388 recordings) in Version 1 to
12.9 hours (587 recordings) in Version 3. Most of the recordings are around
1 minute long; a detailed histogram of the duration of the recordings is

3“CLEAR” stands for “classification of events, activities and relationships”.
4“DCASE” stands for “detection and classification of acoustic scenes and events”.
5http://c4dm.eecs.qmul.ac.uk/sceneseventschallenge/
6http://www.cs.tut.fi/sgn/arg/dcase2016/
7http://www.cs.tut.fi/sgn/arg/dcase2017/
8These numbers follow the description of the CLEAR 2007 evaluation in [10] and [47].

Accounts differ in other references: [48] says the CLEAR 2006 evaluation used 5 seminars
each lasting 10 ∼ 20 minutes; [46] says the CLEAR 2007 evaluation used 100 minutes of
seminar data for development and 200 minutes for evaluation.

9It is not clear whether background segments (where no sound events occur) are
included when this number is calculated.

http://c4dm.eecs.qmul.ac.uk/sceneseventschallenge/
http://www.cs.tut.fi/sgn/arg/dcase2016/
http://www.cs.tut.fi/sgn/arg/dcase2017/

CHAPTER 1. INTRODUCTION 8

0 1 2 3 4 5 6
Recording duration / min

0

20

40

60

80

100

#
 R

e
co

rd
in

g
s

Version 1
New in Version 2
New in Version 3

(a) The distribution of the duration of each recording. A small number of recordings
longer than 6 minutes are omitted.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Duration / min

mumble

white_noise

engine

noise_ongoing

background

music_sing

crowd

speech

music

S
o
u
n
d
 e

v
e
n
t

ty
p
e

010203040
Duration / min

radio

speech_ne

human

noise_nature

noise_pulse

animal

cheer

noise_tone

singing

S
o
u
n
d
 e

v
e
n
t

ty
p
e

Version 1
New in Version 2
New in Version 3

(b) The distribution of the total duration of each sound event type. “Speech ne”
stands for “non-English speech”. “Background” refers to segments when no sound
events occur.

Figure 1.3: Some statistics of the Noiseme corpus.

shown in Fig. 1.3 (a). 48 types of sound events are annotated with exact
onset and offset times; because some event types are rare, we merged them
down to 17 types in our experiments. The total duration of each sound event
type, as well as the “background”, is plotted in Fig. 1.3 (b). The average
polyphony level ranges between 1.40 and 1.43 in the non-background region.

In March 2017, Google released Audio Set [52], which is hundreds of
times larger than all the aforementioned corpora. Audio Set contains
2.1 million 10-second excerpts from YouTube videos, which sum up to
5,800 hours (8 months). The data is annotated with 527 types of sound
events. Unlike other corpora, Audio Set only comes with presence/absence
labeling : the annotation of Audio Set does not specify the exact onset and

CHAPTER 1. INTRODUCTION 9

Name
No. of

Recordings
Avg. Rec.
Duration

Total
Duration

No. SE
Types

No. SE
Instances

Average
Polyphony

ESC-50 [43] 2,000 5 s 2.8 h 50 2,000

UrbanSound [44] 1,302 75 s 27.0 h 10 3,075

CLEAR 2007 [10, 47] 5.0 h 12 1,454

DCASE 2016 [49] 32 214 s 1.9 h 18 1,465

TUT-SED 2009 [50] 103 660 s 18.9 h 61 10,278 2.53

Noiseme [51]
v1 388 73 s 7.9 h 48

(merged
to 17)

9,237 1.40
v2 464 75 s 9.6 h 12,163 1.43
v3 587 79 s 12.9 h 14,382 1.40

Google Audio Set [52] 2.1 million 10 s 8 months 527 N/A

SoundNet [53] 2.1 million 20 s 1 year
1,000 obj. +

401 scenes
N/A

Table 1.1: A summary of corpora available for SED.

offset times of the sound events, but only indicates whether each type of
sound event is present or absent in each 10-second excerpt. Google Audio
Set is a valuable resource for studying sound event detection with weak
labeling.

We have also used the training data of SoundNet [53], which has a similar
size to the Google Audio Set. SoundNet is a deep convolutional neural
network for transfer learning; it takes the audio tracks of videos as input,
and tries to predict the distribution of objects and scenes in the video.
As such, its training data is not annotated with sound events, but with
distributions of visual objects and scenes. Nevertheless, the enormous size
of the corpus still makes it useful for the study of sound event detection. The
corpus consists of 2 millions videos for training and 147 thousand videos for
validation; the videos come from either the YFCC100M10 corpus [54] or the
Flickr website. The first 20 seconds of the audio tracks are used for training
the network, and these sum up to 1 year worth of audio. The annotation,
generated by the VGG16 image recognition network [55], contains the
distributions of 1,000 objects and 401 visual scenes at keyframes. Keyframes
are selected at 3 s, 8 s, 13 s and 18 s of each video; the total number of
keyframes is 7 million for training and 0.5 million for validation. All the
audio tracks, keyframe images, and object and scene distributions can be
downloaded from the demo page11.

A summary of the corpora available for SED can be found in Table 1.1.
Put in a nutshell, these corpora mainly fall into two categories. Some of the
corpora are fully annotated, but they are not large enough to support deep
learning; others are sufficiently large, but only come with weak labeling.
This proposal addresses the challenge of exploiting both the quality of the
former and the volume of the latter.

10“YFCC” stands for “Yahoo Flickr Creative Commons”.
11https://projects.csail.mit.edu/soundnet/

https://projects.csail.mit.edu/soundnet/

CHAPTER 1. INTRODUCTION 10

1.3 Contributions of This Proposal

This proposal studies how we can make use of two types of weak labeling for
sound event detection: sequential labeling and presence/absence labeling. I
specially focus on the temporal localization of sound events, i.e. determining
the onset and offset times of each sound event occurrence even though such
information is not present in the labeling. I also study how transfer learning
can be employed to deal with the data scarcity problem.

SED with sequential labeling: I approach SED with sequential
labeling using the connectionist temporal classification (CTC) framework.
I will show that CTC can be used to predict sequences of sound event
boundaries, and it is better than frame-wise models at detecting transient
events such as pulse noises. Bottlenecks in current research on SED with
sequential labeling include the insufficient amount of training data, and
inadequate exploitation of long events. For the first problem, I propose
a solution of semi-supervised training, in which reliable training instances
are automatically discovered from Google Audio Set and added to the
training data. For the second problem, I propose to add tokens to the CTC
vocabulary that signify sound events are ongoing, besides tokens that signify
the onset and offsets. Temporal localization is also a weakness of CTC. I
propose to train a feed-forward neural network in parallel with the recurrent
neural network underlying the CTC output layer, in order to emphasize local
information and improve the temporal localization of CTC.

SED with presence/absence labeling: I study SED with presence/
absence labeling in the framework of multiple instance learning (MIL). I
compare two types of pooling functions used in MIL: max pooling and noisy-
or pooling. With a proof-of-concept experiment on a speech recognition
task, I demonstrate that max pooling is better suited for SED. I propose
to apply MIL to the Google Audio Set, especially focusing on the temporal
localization of sound events. I am also interested in the discovery of temporal
structure of sound events, and propose methods to automatically classify
sound events as transient, continuous or intermittent.

Transfer learning: Transfer learning can be used to extract features
for SED. Trained on large corpora, transfer learning feature extractors can
overcome the problem of insufficient training data, and it has been shown to
improve the performance of a CTC network [35]. However, current transfer
learning feature extractors (e.g. SoundNet [53]) have a poor temporal
resolution. In this proposal, I will study how to train transfer learning
feature extractors with enough temporal resolution to support the temporal
localization of sound events.

The rest of this proposal is organized as follows: Chapter 2 gives a
review of common models and techniques for deep learning, including feed-
forward neural networks, recurrent neural networks (RNNs), convolutional
neural networks (CNNs), and connectionist temporal classification (CTC).

CHAPTER 1. INTRODUCTION 11

Chapter 3 presents my current progress and proposes future work on SED
with sequential labeling, as well as feature extraction with transfer learning.
Chapter 4 is concerned with SED with sequential labeling, and the automatic
discovery of the temporal structure of sound events. Finally, Chapter 5
summarizes the contributions of this proposal, and gives a tentative timeline
for the work leading up to my thesis defense.

Chapter 2

Review of Deep Learning
Techniques

2.1 Feed-Forward Neural Networks

Neural networks have become the most popular machine learning model in
the past decade. With their tremendous power of approximating functions,
they can be used for a variety of pattern recognition tasks, including image
recognition, speech recognition, sound event detection, etc.

A neural network can be regarded as a complex function. The simplest
form of neural networks is feed-forward neural networks. Feed-forward
neural networks usually consist of many layers stacked on top of each other;
for this reason, they are also called deep neural networks (DNN). Each layer
consists of many neurons; collectively, they take a vector of a fixed size as
input, and generate a vector of a fixed size as output. Let h(l−1) ∈ Rm be
the input to the l-th layer, and h(l) ∈ Rn its output, then the behavior of
the layer can be expressed as:

h(l) = σ(W (l)h(l−1) + b(l)) (2.1)

In this equation, W (l) ∈ Rn×m and b(l) ∈ Rn are called the weight matrix
and the bias vector, and they are the parameters of the l-th layer. σ is a
non-linear function called the activation function, and it is this non-linearity
that gives neural networks the power to approximate functions. Commonly
used non-linear functions include element-wise function such as the logistic
sigmoid function (sigm), the hyperbolic tangent function (tanh), and the
rectified linear unit function (ReLU). The equations of these functions are

12

CHAPTER 2. REVIEW OF DEEP LEARNING TECHNIQUES 13

−2 −1 0 1 2
−2

−1

0

1

2
sigm

−2 −1 0 1 2
−2

−1

0

1

2
tanh

−2 −1 0 1 2
−2

−1

0

1

2
ReLU

Figure 2.1: Common activation functions used in neural networks.

given below, and their graphs are shown in Fig. 2.1.

sigm(x) =
1

1 + e−x
(2.2a)

tanh(x) =
ex − e−x

ex + e−x
(2.2b)

ReLU(x) = max(x, 0) (2.2c)

The choice of the activation function is arbitrary for all but the output
layer. For the output layer, the activation function depends on the type
of the task that the network is trying to solve: for regression, the output
layer uses the identify function; for binary classification, the logistic sigmoid
function is used to generate values between 0 and 1, which can be interpreted
as probabilities; for multi-class classification, a non-element-wise softmax
function is used to generate a probability distribution. Let x1, . . . , xn be the
elements of the vector input to the softmax function, then the i-th element
of its output will be

yi =
exi∑n
j=1 exj

. (2.3)

It can be easily verified that yi > 0,∀ i and that
∑n

i=1 yi = 1, which
makes the vector y a valid probability distribution. The output layer
activation functions suitable for different types of machine learning tasks
are summarized in Table 2.1.

The training of a neural network is the procedure of learning the
parameters of its layers in order to minimize a scalar loss function. The loss
function is usually a sum or average of the contribution from each instance
of the training data. Denote by x the input of an instance, and t its target
output, and let y be the actual output of the network when x is fed into
it. The form of the contribution L(y, t) of this instance to the loss function
depends on the type of the task; the most common forms are also listed in
Table 2.1.

Given the training data, the loss function L on the entire training
corpus can be regarded as a function of the network parameters θ. There

CHAPTER 2. REVIEW OF DEEP LEARNING TECHNIQUES 14

Task
Output layer

activation
Loss function Expression of loss function

Regression Linear
Mean squared

error (MSE)
L(y, t) = ||y − t||22

Binary

classification
Sigmoid

Binary

cross-entropy

L(y, t) =−
∑n

i=1 ti log yi
−
∑n

i=1(1− ti) log(1− yi)
Multi-class

classification
Softmax

Categorical

cross-entropy

L(y, t) = −
∑n

i=1 ti log yi, or

L(y, t) = − log
∑n

i=1 tiyi

Table 2.1: Output layer activation functions and loss functions suitable for
different types of machine learning tasks. The two forms of categorical cross-
entropy loss function are equivalent when only one ti = 1 and all other ti = 0.
The first form is the standard form; the second form is used in Section 3.1.

are many algorithms to minimize the loss function; most of them depend
on the gradient ∇L(θ) of the loss function with respect to the network
parameters. The gradient can be computed using a procedure called
error back-propagation [56], which in essence is the procedure of repeatedly
applying the chain rule of differentiation. Modern deep learning toolkits,
such as Theano [57], TensorFlow [58], and Torch [59], can perform error
back-propagation automatically, so there is no need to derive formulas of
the gradient by hand.

The easiest algorithm to minimize the loss function is gradient descent.
It is an iterative algorithm; in each step, we compute the gradient ∇L(θ),
and update the network parameters by subtracting the gradient times a
learning rate λ:

θi+1 = θi − λ∇L(θi) (2.4)

where the subscript stands for the number of iterations. Every once in a
while, the network is evaluated on a validation corpus (called a checkpoint);
if the performance on the validation corpus stops improving, the learning
rate λ is reduced.

The gradient descent algorithm needs to compute the gradient on the
entire training corpus before each update to the network parameters. To
accelerate training, stochastic gradient descent (SGD) is often employed in
practice. In SGD, the training corpus is divided into many minibatches.
The network parameters are updated after scanning and accumulating the
gradient on each minibatch. In this way, the parameters get updated more
often, and because each minibatch offers a slightly different gradient, the
parameters are less likely to get stuck in a bad local minimum. The
time it takes to go over the entire training data is called an epoch. It is
customary to shuffle the minibatches in order to avoid the network learning
false knowledge from the order of the minibatches. The learning rate is
also often adjusted after each complete pass over the training data, i.e. one
checkpoint is applied per epoch. For very large training corpora, validation

CHAPTER 2. REVIEW OF DEEP LEARNING TECHNIQUES 15

(a) No momentum

−1 −0.5 0 0.5 1
−0.5

0

0.5
(b) Momentum µ = 0.8

−1 −0.5 0 0.5 1
−0.5

0

0.5
(c) Nesterov momentum µ = 0.8

−1 −0.5 0 0.5 1
−0.5

0

0.5

Figure 2.2: The effect of momentum in gradient descent. The loss function
being minimized is f(x, y) = x2 + 25y2. The starting point is (−1.0, 0.4);
the learning rate is 0.01 in all the three subfigures. The red dotted curve
shows the trajectory of the network parameters in the first 20 iterations.

can be performed more often, i.e. one epoch contains multiple checkpoints.
Another commonly used technique to accelerate training is momentum.

With momentum, the update to the network parameters not only includes
the gradient on the current minibatch, but also includes the total update in
the past discounted by a momentum coefficient µ ∈ (0, 1). Let δi+1 be the
difference between the parameters before and after the (i+ 1)-th minibatch,
then the procedure of momentum-acclerated SGD can be summarized as:

θi+1 = θi + δi+1 (2.5a)

δi+1 = µδi − λ∇L(θi) (2.5b)

The initial total update δ0 is set to zero. Momentum is helpful when the
loss function has a narrow ravine. When momentum is not used, in order
to avoid oscillation across the ravine, the learning rate must be set to a
small value, leading to slow progress along the bottom of the ravine. With
momentum, the component of the gradient along the ravine adds up from
iteration to iteration, resulting in faster convergence (see Fig. 2.2 (a) and
(b)).

A direct improvement to the momentum method is the Nesterov momen-
tum [60]. Since we know a part of the update to the parameters is adding
µδi, we can use this look-ahead to evaluate the gradient at θi +µδi, instead
of θi. The formulas of Nesterov momentum can be written as:

δi+1 = µδi − λ∇L(θi + µδi) (2.6a)

θi+1 = θi + δi+1 (2.6b)

The effect of Nesterov momentum is shown in Fig. 2.2 (c); the look-ahead
reduces the oscillation across the ravine.

When implementing neural networks using deep learning toolkits, evalu-
ating the gradient at a point other than θi may incur a formidable amount of
computation. A common practice is to redefine θ′i = θi +µδi as the network
parameters. With some simple variable substitutions, Nesterov momentum

CHAPTER 2. REVIEW OF DEEP LEARNING TECHNIQUES 16

can be reformulated as:

δi+1 = µδi − λ∇L(θ′i) (2.7a)

θ′i+1 = θ′i + µ2δi − (1 + µ)λ∇L(θ′i) (2.7b)

Momentum and Nesterov momentum can be regarded as indirect ways
of using different learning rates for different directions in the parameter
space: along the ravine, the updates in different iterations add up, effectively
increasing the learning rate; in the direction perpendicular to the ravine, the
updates cancel out, effectively decreasing the learning rate. A number of
optimization algorithms, such as RMSprop [61], Adagrad [62], Adadelta
[63], and Adam [64], maintain a different learning rate for each individual
parameter directly, and often converge faster or to a better set of final
parameters than simple SGD.

Because neural networks often have a huge number of parameters,
overfitting can occur easily. There are various algorithms to regularize the
network parameters, such as simple L2 regularization, dropout [65], and
batch normalization [66]. These algorithms also apply to the more complex
network structures to be introduced in the sections below.

2.2 Recurrent Neural Networks (RNN)

When applied to a sequence input, a feed-forward neural network processes
each frame independently, as shown in Fig. 2.3 (a). This means the
prediction yt at time t is only based on the input xt at the same moment,
without using any context information, which can be important for many
machine learning tasks. One way to make use of the context is to splice the
input features of several consecutive frames, but this only provides limited
context. A more principled way is to use a recurrent neural network (RNN).

The structure of an RNN is shown in Fig. 2.3 (b). The value of each
hidden layer not only depends on the layer below it at the same time step,
but also depends on the value of the same layer at the previous time step.

Denote by h
(l)
t the value of the l-th hidden layer at time t, then a RNN can

be described by the following formula:

h
(l)
t = σ(U (l)h

(l)
t−1 +W (l)h

(l−1)
t + b(l)) (2.8)

The matrix U (l) is the recurrent weight matrix of the l-th layer. The initial
states hl

0 of the hidden layers may be set to zero, or they may be treated
as parameters of the network and optimized during training. Equations for
the first hidden layer and the output layer need to be modified slightly, but
we omit them for conciseness.

In the RNN structure described above, information flows in only one
direction along the time axis. This means the prediction at any time step

CHAPTER 2. REVIEW OF DEEP LEARNING TECHNIQUES 17

1x

(1)
1h

(1)W

(2)
1h

(3)
1h

1y

2x

(1)
2h

(2)
2h

(3)
2h

2y

3x

(1)
3h

(2)
3h

(3)
3h

3y

(2)W

(3)W

(4)W

(1)W

(2)W

(3)W

(4)W

(1)W

(2)W

(3)W

(4)W

(a) A feed-forward neural network applied to a time sequence. Subscripts denote
time steps, and superscripts denote layers.

1x

(1)
1h

(1)W

(2)
1h

(3)
1h

1y

2x

(1)
2h

(2)
2h

(3)
2h

2y

3x

(1)
3h

(2)
3h

(3)
3h

3y

(2)W

(3)W

(4)W

(1)W

(2)W

(3)W

(4)W

(1)W

(2)W

(3)W

(4)W
(3)U

(2)U

(1)U

(3)U

(2)U

(1)U

(3)U

(2)U

(1)U

(3)U

(2)U

(1)U(1)
0h

(2)
0h

(3)
0h 




(b) A recurrent neural network (RNN) applied to a time sequence. Subscripts
denote time steps, and superscripts denote layers.









(c) A bidirectional recurrent neural network (RNN) applied to a time sequence. To
avoid clutter, the names of variables are omitted.

Figure 2.3: The structures of a feed-forward neural network, a recurrent
neural network (RNN), and a bidirectional RNN.

CHAPTER 2. REVIEW OF DEEP LEARNING TECHNIQUES 18

can only make use of information at and before this time step. But the
future context is often as important as the past context, so it is desirable
to use a bidirectional RNN structure [67], as shown in Fig. 2.3 (c). Now
each hidden layer consists of a forward chain and a backward chain; both
chains of each layer are connected to both chains of the next layer. Besides

the forward recurrent weights
−→
U (l) and biases

−→
b (l), the network contains

another set of parameters, the backward recurrent weights
←−
U (l) and biases←−

b (l). Let
−→
h

(l)
t be the value of the forward chain in the l-th hidden layer at

time t,
←−
h

(l)
t the value of the backward chain, and h

(l)
t the concatenation of

the two. The dynamics of a bidirectional RNN is described by the following
formulas:

−→
h

(l)
t = σ(

−→
U (l)−→h (l)

t−1 +W (l)h
(l−1)
t +

−→
b (l)) (2.9a)

←−
h

(l)
t = σ(

←−
U (l)←−h (l)

t+1 +W (l)h
(l−1)
t +

←−
b (l)) (2.9b)

A bidirectional RNN enjoys unlimited context, i.e. the prediction at any
time step has access to the entire input sequence.

Recurrent neural networks that use any of the simple non-linear functions
(Eqs. 2.2a, 2.2b and 2.2c) are called vanilla RNNs. Vanilla RNNs often
encounter difficulty in training, due to a phenomenon called gradient
vanishing or gradient explosion [68]. In RNNs, the gradient of the loss
function with respect to the network parameters are computed using an
algorithm called back-propagation through time (BPTT) [69]. As the error
is propagated through time in a hidden layer, it is repeatedly multiplied
by the recurrent weight matrix. If the spectral radius (i.e. the maximum
absolute value of its eigenvalues) of the recurrent weight matrix is smaller
than 1, the error will vanish, which means that distant context has little
effect on the prediction. If the spectral radius is larger than 1, the error will
explode, causing the training to diverge.

The gradient explosion problem can be solved by gradient clipping : if
the absolute value of any element of the gradient exceeds a threshold Θ, then
set the element to either Θ or −Θ depending on its sign. However, to solve
the gradient vanishing problem, it is necessary to use more complicated non-
linear functions than the ones introduced earlier. Such non-linear functions
often make use of the gating mechanism, and may contain a “memory cell” to
preserve information for a long time. Two widely used non-linear functions
are long short-term memory (LSTM) cells [70] and gated recurrent units
(GRUs) [71].

The structure of an LSTM cell is shown in Fig. 2.4 (a). It maintains

two state variables: the cell state c
(l)
t , and the output h

(l)
t . Inputs to the

LSTM cell includes the output h
(l−1)
t from the layer below, and the output

h
(l)
t−1 from the previous time step (for simplicity, we only discuss the case of

unidirectional RNNs). These inputs are used to generate a candidate value

CHAPTER 2. REVIEW OF DEEP LEARNING TECHNIQUES 19

Candidate

generation

()

1

l

t−

h
(1)l

t

−h

()l

t
ɶc

Input

gate

()

1

l

t−

h
(1)l

t

−h

()l

t
i

× ＋

×

Forget

gate

()

1

l

t−

h
(1)l

t

−h

()l

t
f

Delay

()l

t
c

()l

t
h

Output

gate

()

1

l

t−

h
(1)l

t

−h

()l

t
o

×

()

1

l

t−

c

(a) An LSTM cell

Candidate

generation

()

1

l

t−

h

(1)l

t

−

h

()l

t

ɶh

Reset

gate

()

1

l

t−

h
(1)l

t

−

h

()l

t
r

×

()l

t
h

Update

gate

()

1

l

t−

h

(1)l

t

−

h

()l

t
z

×

×

()

1

l

t−

h

＋

1–

(b) A gated recurrent unit (GRU)

Figure 2.4: The structures of an LSTM cell and a gated recurrent unit
(GRU).

c̃
(l)
t of the cell state, and to control the input gate, forget gate, and output

gate. The new cell state c
(l)
t may accept contributions from the candidate

input c̃
(l)
t and the previous cell state c

(l)
t−1; the input and forget gates controls

whether they are turned on or off. Finally, the output h
(l)
t of a cell is its

cell state passed through a simple non-linear function and modulated by
the output gate. The behavior of an LSTM cell can be described by the

CHAPTER 2. REVIEW OF DEEP LEARNING TECHNIQUES 20

following equations:

c̃
(l)
t = σc(U

(l)
c h

(l)
t−1 +W (l)

c h
(l−1)
t + b(l)c) (2.10a)

i
(l)
t = sigm(U

(l)
i h

(l)
t−1 +W

(l)
i h

(l−1)
t + b

(l)
i) (2.10b)

f
(l)
t = sigm(U

(l)
f h

(l)
t−1 +W

(l)
f h

(l−1)
t + b

(l)
f) (2.10c)

o
(l)
t = sigm(U (l)

o h
(l)
t−1 +W (l)

o h
(l−1)
t + b(l)o) (2.10d)

c
(l)
t = i

(l)
t � c̃

(l)
t + f

(l)
t � c

(l)
t−1 (2.10e)

h
(l)
t = o

(l)
t � σh(c

(l)
t) (2.10f)

The � sign stands for element-wise multiplication. The input, forget and
output gate must use the logistic sigmoid non-linearity in order to produce
values between 0 and 1. The non-linear functions σc for the candidate cell
state and σh for the output are configurable; the tanh function is a popular
choice.

The structure of a gated recurrent unit (GRU), shown in Fig. 2.4 (b), is

simpler. It maintains only one state variable h
(l)
t . It has a update gate z

(l)
t ,

which has a similar role to the forget gate in an LSTM cell. There is no
independent input gate; in other words, the input gate is coupled with the
update gate, so that their values must sum to one. There is also no output

gate; instead, a reset gate r
(l)
t is inserted between the previous and current

time steps when generating a candidate state variable h̃
(l)
t . The behavior of

a GRU is described by the following equations:

z
(l)
t = sigm(U (l)

z h
(l)
t−1 +W (l)

z h
(l−1)
t + b(l)z) (2.11a)

r
(l)
t = sigm(U (l)

r h
(l)
t−1 +W (l)

r h
(l−1)
t + b(l)r) (2.11b)

h̃
(l)
t = σh(U

(l)
h (r

(l)
t � h

(l)
t−1) +W

(l)
h h

(l−1)
t + b

(l)
h) (2.11c)

h
(l)
t = (1− z(l)t)� h̃(l)

t + z
(l)
t � h

(l)
t−1 (2.11d)

As with LSTM cells, the update and forget gates must use the logistic
sigmoid non-linearity, while the candidate state variable often adopts the
tanh non-linearity.

In the LSTM structure, there is a path from the previous cell state c
(l)
t−1 to

the current cell state c
(l)
t that only goes through the multiplication with the

forget gate f
(l)
t . Likewise, in the GRU structure, there is a path from h

(l)
t−1

to h
(l)
t that only goes through the multiplication with the update gate z

(l)
t .

When these gates stay open (i.e. have values close to 1) for many time steps,
the error can flow back through the gates without much attenuation. This
solves the gradient vanishing problem, and gives LSTM and GRU networks
much longer memory than vanilla RNNs.

CHAPTER 2. REVIEW OF DEEP LEARNING TECHNIQUES 21

2.3 Convolutional Neural Networks (CNN)

Convolutional neural networks (CNNs) are another way to make use of
context information in prediction. They are most widely used in image
recognition (e.g. [55, 72]).

A convolutional neural network usually consists of convolutional layers,
interweaved with pooling layers. The data passed between the layers are in
the form of 3-dimensional tensors, each slice of which is called a feature map.
We denote the p-th feature map at the output of the l-th layer by the matrix

by H
(l)
p . The parameters of a convolutional layer include a 4-dimensional

kernel tensor W (l) and a 3-dimensional bias tensor B(l). Let W
(l)
pq and B

(l)
p

be 2-dimensional slices of the kernel and bias tensors, then the behavior of
a convolutional layer is described by:

H(l)
p = σ

(∑
q

[W (l)
pq ∗H(l−1)

q] +B(l)
p

)
(2.12)

where the asterisk stands for 2-dimensional convolution, and σ is a non-linear
function.

The behavior of pooling layers is simpler. A m×n pooling layer divides
each input feature map into regions of m×n pixels, and computes a statistics
for each region as the output. The most common statistics include the
maximum and the average. An optional non-linearity may be applied to the
pooling result.

When applied to image recognition, the neural network only needs to
make one prediction for an entire image, which is represented as 1 (for
gray-scale images) or 3 (for color images) huge feature maps. The layers
are usually arranged in a way such that convolutional layers increase the
number of feature maps, and pooling layers reduce the size of the feature
maps. When the feature maps are sufficiently small, they are often flattened
into one single vector, followed by one or more fully connected layers to make
the prediction.

CNNs may be applied to speech signals in two ways. The first way is to
take the spectrogram or filterbank outputs as input. In this case, the input
is a 2-dimensional feature map whose axes are time and frequency, and
can be treated the same way as an image. The second way is to take the
raw waveform as input. In this case, the input is a 1-dimensional feature
map, which means the convolutional layers should perform 1-dimensional
convolutions instead of 2-dimensional ones. In speech tasks, we often want
a sequence output at a certain frame rate (e.g. 10 ms for speech recognition,
100 ms for sound event detection). To achieve this, we can stop using pooling
layers when the step size along the time axis of the feature maps have been
reduced to the desired value.

CHAPTER 2. REVIEW OF DEEP LEARNING TECHNIQUES 22

The benefits of using CNNs for image recognition are shift invariance
and locality. Shift invariance means that the prediction for an image does
not change when the object of interest moves within the image. This
is irrelevant for speech applications: shifting a sound in the input audio
along the time axis should also shift the output; shifting a sound along
the frequency changes the quality of the sound and may also affect the
output. Locality means each neuron in a CNN only receives information
from neurons representing a neighboring region in the layer below. This
implies that CNNs, when applied to speech, do not have unlimited context
as RNNs do. The range in the input audio that may provide information
for a given neuron is called the receptive field of the neuron; it is crucial to
design CNNs whose neurons have receptive fields of appropriate sizes.

2.4 Connectionist Temporal Classification (CTC)

In any of the neural network architectures introduced so far, the loss function
is the sum or average of the loss at each frame. To define the loss at
each frame, it is necessary to have frame-wise supervision. For example,
in speech recognition, we need to know the exact onset and offset times of
each phoneme or sub-phonemic state; in sound event detection, we need
to know the onset and offset times of each sound event occurrence, or, in
other words, which events are active at each frame. The sequence formed by
concatenating frame-level labels is called an alignment. In sequence learning
tasks, the supervision often comes in the form of a label sequence without
alignment; while sometimes it is possible to create alignments, it can take
extra effort. Connectionist temporal classification (CTC) [73] is one way
of defining a sequence-level loss function that depends only on the label
sequence, making it possible to train neural networks without alignment.

The CTC loss function on a single training sequence is the negative log-
likelihood of the probability of the label sequence. It is the sum of the
probabilities of all alignments that can be mapped to the label sequence.
The simplest way to map an alignment to a label sequence is to reduce all
consecutive repeating tokens to a single one. For example, if the outputs
at the six frames of a sequence are ABBBAA, then it will map to the label
sequence ABA. This mapping function has two drawbacks: (1) it cannot
produce label sequences with consecutive repeating tokens, such as ABBA;
(2) it requires that each frame must output a token, while it can make
more sense to allow some frames (e.g. silent frames) to output nothing.
To overcome these drawbacks, CTC adds a blank token, denoted by “-”,
to the frame-wise output vocabulary. The mapping function works in two
steps: first, it reduces consecutive repeating tokens into a single one; second,
it removes the blank tokens. In this way, the alignments -AB--BAA and
ABBB-BBA will both map to the label sequence ABBA.

CHAPTER 2. REVIEW OF DEEP LEARNING TECHNIQUES 23

Figure 2.5: The trellis for computing the CTC loss function, taken from [73].
The target label sequence is CAT. Black circles represent non-blank tokens,
and white circles represent blanks.

Given the frame-level output distributions, the total probability of a label
sequence can be computed using a dynamic programming algorithm, similar
to the forward algorithm in HMMs [74]. The computation is conducted
on the trellis shown in Fig 2.5. The horizontal axis, which goes from 1
to T , stands for time steps; the vertical axis represents the target label
sequence with blank tokens inserted at the beginning, at the end, and
between every pair of tokens. Each alignment that can map to the target
sequence corresponds to a path in the trellis.

We denote by L the target label sequence augmented with blanks, and
its i-th token by Li. Also let yt(c) be the probability of the token c in the
output distribution at step t. Define αt(i) as the total probability of the
paths landing on Li at time t and emitting all the tokens along the way. At
each time step, the path is allowed to stay at the same token, transition to
the next token, or skip over the next token, but the skipping can only happen
when the token skipped over is a blank, and the two tokens around it are
different. CTC assumes that the outputs at all the time steps are mutually
independent given the input sequence, because context dependency can be
taken care of by the recurrent layers of the network. Therefore it does not
model transition probabilities, and the α’s are computed with the following
recurrence formula:

αt(i) =


yt(Li)

∑i
j=1 αt−1(j), if i ≤ 2

yt(Li)
∑i

j=i−1 αt−1(j), if i > 2, and Li = Li−2
yt(Li)

∑i
j=i−2 αt−1(j), if i > 2, and Li 6= Li−2

(2.13)

The path is allowed to start at either the first non-blank token or the blank

CHAPTER 2. REVIEW OF DEEP LEARNING TECHNIQUES 24

Figure 2.6: The “peaky” output of a CTC speech recognition network on
the utterance “museums in Chicago”. Each colored line stands for the
probability of a phoneme; the dotted line stands for the probability of the
blank token. Taken from https://research.googleblog.com/2015/09/

google-voice-search-faster-and-more.html.

before it, so the α’s are initialized as:

α1(i) =

{
y1(Li), if i ≤ 2
0, if i > 2

(2.14)

The path can finish at either the last non-blank token or the blank after it,
so the total probability of the target label sequence is

P (L) = αT (|L| − 1) + αT (|L|) (2.15)

where |L| is the length of the sequence L.
Decoding on a network with a CTC output layer can be performed in

two ways. The theoretically correct way is to find the label sequence that
has the largest total probability. Doing so would require prefix search, and
it is relatively hard to implement. A simpler way of decoding is best path
decoding. It takes the token that has the maximum probability at each time
step to form an alignment, and then maps the alignment to a label sequence.
Because CTC does not model transition probabilities, this is equivalent to
finding the best path through the trellis, and mapping the path to a label
sequence. Best path decoding is a reasonable approximation of prefix search
decoding.

The evolution of the output of a CTC network during training exhibits
an interesting pattern [75]. In the first few epochs, the network may go
through a “warm-up” stage, in which the output distributions at all time
steps are dominated by the blank symbol. Afterwards, “peaks” will occur in
the probabilities of non-blank tokens, and the sequence formed by reading
off the tokens corresponding to the peaks will approximate the target label
sequence (see Fig 2.6). The peaks normally do not span the entire duration
of a phoneme, but only last one or two frames. In speech recognition, the
positions of the peaks have been found to match the positions where the
phonemes actually occur.

https://research.googleblog.com/2015/09/google-voice-search-faster-and-more.html
https://research.googleblog.com/2015/09/google-voice-search-faster-and-more.html

Chapter 3

Sound Event Detection with
Sequential Labeling

This chapter describes the first step of our effort toward sound event
detection using weak labeling. Instead of having the exact onset and
offset times of each sound event occurrence, we try to learn sound events
from annotations that only specify the order of sound events. In the case
of polyphonic SED, sound events may overlap, making it hard to define
sequences of sound events. To overcome this difficulty, we use annotations
that specify sequences of event boundaries (i.e. onsets and offsets), instead
of the events themselves. We call such annotations sequential labeling.
Sequential labeling is easier to produce manually than strong labeling;
moreover, they may be mined from textual descriptions of audio recordings.
For example, the textual description “a dog barks while a car passes by” may
be mapped to the following sequence of event boundaries: engine start,

animal start, animal end, engine end. Recurrent neural networks with
a connectionist temporal classification output layer (CTC-RNN) are well
suited for learning from this form of supervision.

The content of this chapter is organized as follows. Section 3.1 describes
a recurrent neural network (RNN) we trained with strong labeling for
monophonic SED. This network is used for pre-training the CTC-RNN for
polyphonic SED. Section 3.2 describes our experiments of polyphonic SED
with a CTC-RNN on the Noiseme corpus [51]. To enforce that the CTC-
RNN generate peaks around the actual locations of sound event boundaries,
we strengthen the supervision a little bit by alignment hinting. The CTC-
RNN suffers badly from overfitting. To reduce the overfitting, in Section 3.3,
we replace the original low-level acoustic features with features extracted
from SoundNet [53]. SoundNet is a convolutional network that tries to
predict video information from audio input, and is an example of transfer
learning. We show that using SoundNet as a feature extractor slightly
improves the generalization power of the CTC-RNN, and greatly accelerates

25

CHAPTER 3. SED WITH SEQUENTIAL LABELING 26

its convergence. Section 3.4 analyzes the errors made by the CTC-RNN, and
points out that data scarcity is the bottleneck that limits the generalization
power. Finally, in Section 3.5, we propose ideas to address this bottleneck
as well as other problems to improve the SED performance, including semi-
supervised learning from large weakly-labeled data, better exploiting long
events, improving the temporal localization, etc.

The work in this chapter has been published in [8, 34, 35].

3.1 Monophonic SED with Strong Labeling

We first built a bidirectional RNN to perform monophonic SED with strong
labeling. The annotation contained the exact onset and offset times of each
sound event occurrence, or, in other words, which sound events were active
at each frame. The network predicted active sound events on a frame-by-
frame basis, and at most one sound event was predict at each frame. The
network went through a series of improvements between the publications of
[8] and [34]; here we describe the final version.

The network was trained on Version 2 of the Noiseme corpus [51], which
contained 7.9 hours of audio and 17 sound event types. The corpus was
partitioned into training, validation and test sets with a duration ratio of
3:1:1, and care was taken to make sure that the duration of each sound event
type in the three sets also formed a ratio of 3:1:1.

We extracted acoustic features using the OpenSMILE toolkit [76, 77].
We first extracted low-level features such as MFCCs and fundamental
frequency, and then computed a variety of statistics over these raw features
using sliding windows of 2 seconds moving 100 ms at a time. This
procedure yielded feature sequences with a frame rate of 10 Hz. The
dimensionality of the feature vectors was 6,669, but many of the dimensions
were strongly correlated. We conducted principal component analysis
(PCA) to decorrelate the features, and retained only the top 50 dimensions.
Each dimension was then globally normalized to span the range [−0.9, 0.9].

We implemented the bidirectional RNN using the Theano toolkit [57].
The network had an input layer with 50 units, corresponding to the
dimensions of the acoustic features. The network had one hidden layer
with two chains running in opposite directions; each chain consisted of 400
LSTM cells. The output layer contained 18 nodes in a softmax group,
corresponding to the 17 sound event types plus a “background” type.
The network was trained using the categorical cross-entropy loss function.
Because multiple sound events might be active at the same time, we used
the second form in Table 2.1 (L(y, t) = − log

∑
i tiyi), i.e. we wanted to

maximize the total probability of all active events, without caring about
how the probability mass was distributed among them. The evaluation
metric was frame accuracy. Also considering overlapping sound events, we

CHAPTER 3. SED WITH SEQUENTIAL LABELING 27

regarded a frame as correctly classified if any of the ground-truth sound
event types got the highest predicted probability. One minus the frame
accuracy is called the frame error rate.

The network was trained with the stochastic gradient descent (SGD)
algorithm. Each minibatch consisted of 5 sequences of 500 frames; longer
training sequences were split into sequences shorter than 500 frames, cutting
in the middle of silence segments whenever possible. The initial learning
rate was 0.005, and we applied a Nesterov momentum coefficient of 0.9.
We adopted an adaptive learning rate schedule: after every epoch, if the
validation frame error rate decreased by more than 1% relative, the learning
rate was increased by 5%; when the validation frame error decreased by
less than 0.5% relative, the learning rate was decreased by 20%; training
was terminated when the validation frame error rate decreased by less than
0.1% relative for 5 consecutive epochs.

We found two tricks helpful for improving the frame accuracy. The
first trick was setting the initial bias of the forget gates to one, in order to
encourage remembering in the early stages of training. This is an effective
practice first proposed in [78], and emphasized in [79]. Biasing the forget
gates increased the frame accuracy by 1.8% absolute [34]. The second trick
was data augmentation. We extracted acoustic features from both channels
of the audio files, and used two different versions of OpenSMILE (1.0.1 and
2.1). This multiplied the amount of training data by four. During training,
we adjusted the learning rate after every quarter pass through the augmented
training data; during testing, we averaged the probabilities predicted on the
four copies of features for each audio file before selecting the maximum.
Data augmentation contributed another 0.7% to the frame accuracy.

We trained four such networks using different random initializations.
The average frame accuracy of the four networks was 54.0%. The single
best network reached an accuracy of 55.5%, and was used to initialize the
CTC model.

3.2 Polyphonic SED with Sequential Labeling

Building upon the bidirectional RNN for frame-wise monophonic SED, we
continued to train a CTC-RNN that learnt to perform polyphonic SED
from weak labeling. Even though we had the exact onset and offset times
of the sound event occurrences in the annotation, we discarded the timing
information to produce weak labeling in the form of sequences of event
boundaries. For example, if the content of an audio recording could be
described as “a dog barks while a car passes by”, then the sequence of
event boundaries would be engine start, animal start, animal end,

engine end.

CHAPTER 3. SED WITH SEQUENTIAL LABELING 28

…

Acoustic signal

Acoustic features

Bidirectional LSTM

(400 x 2)

CTC output

(Interpretation:

dog barks while

car passes by)

Figure 3.1: Structure of the CTC-RNN for polyphonic SED with sequential
labeling.

3.2.1 Training the CTC-RNN

The CTC-RNN was also implemented using the Theano toolkit. The
structure of the CTC-RNN is shown in Fig. 3.1. It accepted the same form
of input as the frame-wise RNN, and the structure was also identical up to
the hidden layer. The output layer now contained 35 neurons in a softmax
group – two for the onset and offset of each of the 17 sound event types, and
one for the blank token. The network was trained to minimize the per-frame
CTC loss. That is, let Pi be the total probability of all alignments that can
be mapped to the ground-truth sequence of event boundaries for the i-th
training sequence, and Ti be its duration, then the objective function to be
minimized was L = −

∑
i Ti logPi/

∑
i Ti.

The network was also trained on Version 2 of the Noiseme corpus. Data
augmentation was not applied this time; we only used the left channel
and OpenSMILE 1.0.1. The training algorithm was SGD with a Nesterov
momentum of 0.9. The learning rate was initialized to 0.3; it was kept
constant until 200 epochs, and decayed with a factor of 0.99 every epoch
until reaching 500 epochs.

We found it necessary to apply gradient clipping in order to avoid the
gradient explosion problem. Without gradient clipping, the magnitudes of
the gradients in the first few epochs would be larger than in subsequent
epochs; this would force us to use a smaller learning rate which would slow
down the convergence. Moreover, without gradient clipping, a single large
value in the gradients could result in an abrupt surge in the training loss,
which could take up to 100 epochs to compensate for, or even cause the

CHAPTER 3. SED WITH SEQUENTIAL LABELING 29

1110987654321

-

A

-

B

-

C

-

D

-

Figure 3.2: An example of alignment hinting with tolerance k = 1.
The horizontal axis stands for time, and the vertical axis stands for the
augmented label sequence. The ground-truth timestamps of the four non-
blank tokens are Frames 2, 6, 7, 10 respectively. If no alignment hinting was
applied, the total probability of the label sequence ABCD would be the sum
of the probabilities of all paths that go through the arrows. With alignment
hinting, the path must go through the bold states for non-blank tokens, and
only paths that go through the bold arrows are included in the sum.

training to crash. We found 0.001 to be a good clipping limit.
By inspecting the output of the CTC-RNN on the training data, we

found that it was able to output the correct token sequence most of the
time, but the tokens were often far away from the actual positions where
the boundaries of the sound events occurred (see Fig. 3.4 (a)). This means
the model picked up spurious patterns from random positions in the feature
sequences. In order to lead the CTC-RNN to find the correct alignment,
we strengthened the annotations a little bit by approximately using the
timing information in the annotations. We applied the following constraint
when computing the alpha trellis during CTC training: all paths must go
through a non-blank token within k frames of the moment when the token
actually occurs (we call k the tolerance). That is, if the i-th token Li in the
augmented token sequence is not a blank, and occurs at frame ti according
to the annotation, then all αt(i) with |t − ti| > k would be set to zero.
This constraint still leaves the model the freedom to find the best alignment
within (2k+1)-frame windows, as well as allowing annotations to be at most
k frames off. We call this technique alignment hinting ; Fig. 3.2 shows an
example when the tolerance k = 1.

CHAPTER 3. SED WITH SEQUENTIAL LABELING 30

3.2.2 Quantitative and Qualitative Evaluation

Evaluation of the CTC-RNN was conducted from two aspects. Quantitati-
vely, we computed the token error rate (TER) of the network output. We
decoded the CTC output with best path decoding to obtain sequences of
sound event boundaries, compared them with the ground-truth sequences,
and computed the TER in the same way as word error rate (WER) in
speech recognition. Qualitatively, we inspected the probability distribution
predicted by the CTC-RNN at each frame to see whether it produced peaks
for sound event boundaries at the right positions.

Fig. 3.3 shows the effect of gradient clipping and alignment hinting on the
evolution of the training loss and TER. Because we didn’t use any cross-
validation, we used both the validation and test sets (40% of the entire
corpus) as testing data. The first three curves indicate that gradient clipping
not only avoided the surges in the training loss and TER curves, but also
allowed us to use a larger learning rate (0.3 vs 0.1). The last three curves
indicate that alignment hinting helped the model to converge faster and
to a better solution. With a hinting tolerance of k = 5 (i.e. windows of
1 second), the final training TER was 13%, and the final test TER was 81%.
Even though these numbers were lower than the unhinted case, overfitting
remained a problem.

The TER metric reflects how good a network is at recovering the correct
sequence of sound events. But this is not enough for sound event detection;
we also expect the peaks in the network output to occur at the right
positions, i.e. at the starts and ends of sound event instances. In Fig. 3.4,
we plot the output of the networks with and without alignment hinting on
some training and test recordings.

Graph (a) shows the output of the network without alignment hinting
on a training recording. At the middle of this recording were three cannon
shots, signified by the pulse, white, nature sequence repeated three
times. The unhinted network was able to recover this sequence correctly,
but most tokens were placed far away from the positions where they really
occurred, and the tokens tended to cluster together. Graph (b) shows the
output of a hinted network (with tolerance k = 5) on the same recording.
Now we see that the alignment hinting forced the peaks to be generated
near the actual starts and ends of the sound events.

Graphs (c) and (d) show the output of the same hinted network on two
test recordings. The CTC-RNN was able to detect the span of some sound
event instances (e.g. the speech segments in graph (d)), notably transient
ones (e.g. the pulses in graph (c)). However, many sound events were still
missed (e.g. the cheering, music and engine noise).

CHAPTER 3. SED WITH SEQUENTIAL LABELING 31

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

Epoch

Training cost

0 100 200 300 400 500
0

20

40

60

80

100

Epoch

Training TER

0 100 200 300 400 500
75

80

85

90

95

100

Epoch

Test TER

No grad clipping, LR = 0.1

Clip limit = 0.001, LR = 0.1

Clip limit = 0.001, LR = 0.3

Clip limit = 0.001, LR = 0.3, hint k = 15

Clip limit = 0.001, LR = 0.3, hint k = 5

loss

Figure 3.3: Training curves of the CTC-RNN with different gradient
clipping limits, initial learning rates, and alignment hinting tolerances. The
tolerances k = 15 and k = 5 correspond to windows of 3 seconds and
1 second. Note the different scales of the training and test TERs, which
indicates severe overfitting. Best viewed in color.

3.3 Improving the Acoustic Features with Trans-
fer Learning

Even though the CTC-RNN was able to detect some sound events (e.g.
speech and pulses), it still generalized poorly to new data. We surmise
that the limited amount of training data was a main reason. Not only did
this limit the number of instances that the network could learn from, but
it also restricted the complexity of the network so it couldn’t enjoy all the
benefits of deep learning. Since Google Audio Set [52] was not available
yet at this time, we resorted to transfer learning to solve these problems.
Transfer learning is the technique of taking knowledge learned from a task
with larger data (“source task”) and applying it to a related task with
smaller data (“target task”). It has been successfully applied to acoustic
scene recognition in [80], where the knowledge was transferred from six other
acoustic scene recognition tasks with different label sets than the target
task. In our work, we transferred knowledge from a visual object and scene
recognition task to help sound event detection. The knowledge was distilled

CHAPTER 3. SED WITH SEQUENTIAL LABELING 32

50 100 150 200 250

blank
sp_ne

cheer

engine

pulse

nature

white

Frame

S
ou

nd
 e

ve
nt

(a) Training recording, no hinting

0

0.5

1

50 100 150 200 250

blank
sp_ne

cheer

engine

pulse

nature

white

Frame

S
ou

nd
 e

ve
nt

(b) Training recording, hinting k = 5

0

0.5

1

50 100 150 200 250 300 350

blank
sp_ne

cheer

engine

ongoing

pulse

nature

Frame

S
ou

nd
 e

ve
nt

(c) Testing recording 1, hinting k = 5

0

0.5

1

100 200 300 400 500 600

blank

speech

sp_ne

music

engine

Frame

S
ou

nd
 e

ve
nt

(d) Testing recording 2, hinting k = 5

0

0.5

1

50 100 150 200 250

blank
sp_ne

cheer

engine

pulse

nature

white

Frame

S
ou

nd
 e

ve
nt

(a) Training recording, no hinting

0

0.5

1

50 100 150 200 250

blank
sp_ne

cheer

engine

pulse

nature

white

Frame

S
ou

nd
 e

ve
nt

(b) Training recording, hinting k = 5

0

0.5

1

50 100 150 200 250 300 350

blank
sp_ne

cheer

engine

ongoing

pulse

nature

Frame

S
ou

nd
 e

ve
nt

(c) Testing recording 1, hinting k = 5

0

0.5

1

100 200 300 400 500 600

blank

speech

sp_ne

music

engine

Frame

S
ou

nd
 e

ve
nt

(d) Testing recording 2, hinting k = 5

0

0.5

1

Figure 3.4: Example predictions of the CTC-RNN on some training and test
recordings. Each row of the graphs stands for an output token; each sound
event type is associated with two rows – its start and end tokens. Shades of
gray signify the output probability. Crosses mark the most probable token
at each frame; black dots (forming strings) mark the true span of sound
events. Ideally, a piece of gray (a “peak”) with one or more crosses should
occur just above the start and below the end of each sound event instance.
“Sp ne” stands for “non-English speech”. Unimportant sound events for
these examples are omitted.

CHAPTER 3. SED WITH SEQUENTIAL LABELING 33

Convolutional Neural Network

VGG16

Audio stream (20s)

Object & scene

distributions at

3s, 8s, 13s, 18s

(Prediction)

Object & scene

distributions at

3s, 8s, 13s, 18s

(Target)

Video stream (20s)

Figure 3.5: The architecture of SoundNet [53]. It is trained to minimize the
KL divergence between the predicted distributions and target distributions.

in a deep convolutional network called SoundNet [53]; we used it as a feature
extractor for the CTC-RNN, so the latter could enjoy the deep structure and
vast training data of SoundNet.

3.3.1 The Structure of SoundNet and Its Variants

The overall architecture of SoundNet is shown in Fig. 3.5. It is a deep
convolutional network that takes raw waveforms as input, and tries to
predict the objects and scenes in video streams at certain points. The ground
truths of the objects and scenes are produced by the image recognition
network VGG16 [55]. Even though what can be seen in the video may not
always be heard in the audio and vice versa, with sufficient training data,
the network can still be expected to discover the correlation between the
audio and the video. After the network is trained, the activations of an
intermediate layer can be considered a representation of the audio suitable
for both visual object and scene recognition and sound event detection.
Actually, SoundNet has outperformed other features and models by a
significant margin in the acoustic scene classification task of the DCASE

CHAPTER 3. SED WITH SEQUENTIAL LABELING 34

Layer input conv1 pool1 conv2 pool2 conv3 conv4 conv5 pool5 conv6 conv7 conv8 (output)

feature maps 1 16 16 32 32 64 128 256 256 512 1024 1000 + 401
Filter size 64 32 16 8 4 4 4 4
Activation relu relu relu relu relu relu relu softmax

Batch norm. yes yes yes yes yes yes yes
Subsampling 2 8 2 8 2 2 2 4 2 2 2

Frame rate (Hz) 22,050 11,025 1,378 689 86 43 21.5 10.8 2.69 1.35 0.67 0.34
Reception Field 2.9 ms 3.5 ms 26 ms 36 ms 0.21 s 0.37 s 0.51 s 0.79 s 1.91 s 4.13 s 8.59 s

(a) The layers of the original SoundNet.

Layer input conv1 pool1 conv2 pool2 conv3 conv4 conv5 pool5 fc1 fc2 fc3 output

feature maps 1 16 16 32 32 64 128 256 256 100 100 100 1000 + 401
Filter size 64 32 16 8 4
Activation relu relu relu relu relu tanh tanh tanh softmax

Batch norm. yes yes yes yes yes
Subsampling 2 5 2 5 2 2 2 2

Frame rate (Hz) 16,000 8,000 1,600 800 160 80 40 20 10 10 10 10 10
Reception Field 4.0 ms 4.5 ms 24 ms 29 ms 0.12 s 0.21 s 0.29 s 0.34 s 0.34 s 0.34 s 0.34 s 0.34 s

(b) The structure of SN-F, with layers above “pool5” replaced by fully connected
layers.

Layer gru1 gru2 gru3 output

feature maps 100 × 2 100 × 2 100 × 2 1000 + 401
Activation relu relu relu softmax

Batch normalization yes yes yes
Frame rate (Hz) 10 10 10 10

(c) The higher, recurrent layers of SN-R. Layers up to “pool5” are identical to
SN-F.

Table 3.1: Detailed information about the layers of SoundNet and its two
variants, SN-F and SN-R.

2013 challenge and a sound event classification task on the ESC-50 corpus
[53].

Information about the layers of SoundNet is listed in Table 3.1 (a). The
input is a 20-second, monaural waveform with a sample rate of 22,050 Hz.
The network has seven hidden convolutional layers, interspersed with max-
pooling layers. Each convolutional layer doubles the number of feature
maps and halves the frame rate; each max-pooling layer halves the frame
rate as well. The output layer is also convolutional. It has 1,401 output
units, split into two softmax groups of sizes 1,000 and 401, standing for
the distributions of objects and scenes, respectively. The output layer of
SoundNet has a frame rate of about 1/3 Hz. This corresponds to about
6.7 frames, but considering boundary effects, the actual output only contains
the distributions of objects and scenes at 4 time steps.

To localize the onsets and offsets of sound events with reasonable
precision, the CTC-RNN for sound event detection must run at a sufficient
frame rate. In our previous experiments, this frame rate was set to
10 Hz. In SoundNet, only one layer (“conv5”) has a frame rate close to
this value. Therefore, we used the lower part of SoundNet (up to layer

CHAPTER 3. SED WITH SEQUENTIAL LABELING 35

“conv5”) as a feature extractor for the CTC-RNN. These features replaced
the 50 dimensional PCA features used in previous experiments.

It might be expected that higher layers of SoundNet would compute
representations of the input audio more closely related to objects and
scenes, or closer to sound events. However, these layers in SoundNet were
subsampled too much to be used for SED. In order to make use of the
information in the higher layers, we trained two variants of SoundNet, SN-F
and SN-R. Instead of using convolutional layers all the way up, we switched
to fully connected (SN-F) or recurrent (SN-R) layers after the frame rate had
been reduced to the desired value of 10 Hz. After three fully connected or
recurrent layers, a fully connected output layer would perform the object and
scene classification. Also, we changed the input sampling rate to 16,000 Hz
to match the Noiseme corpus [51]. The structures of SN-F and SN-R are
summarized in Tables 3.1 (b) and 3.1 (c). The values at the “pool5” layer
or any higher layer could be used as input features for the CTC-RNN.

3.3.2 Training SoundNet and Its Variants

The original SoundNet was trained using the Torch [59] toolkit. As
introduced in Section 1.2, the training data contained 2 million 20-second
video excerpts, while the validation data was about 1/15 the size of the
training data. Target object and scene distributions were extracted from
keyframes at 3 s, 8 s, 13 s and 18 s of each video. The network predicted
object and scene distributions at four moments in each excerpt which were
3 seconds apart; the misalignment between the timestamps of the target and
predicted distributions was ignored. The network was trained to minimize
the sum of the average KL divergence of the object distributions and that of
the scene distributions. The optimizer was Adam [64] with a fixed learning
rate of 0.001 and a momentum of 0.9. Each minibatch contained 64 videos,
and the network was trained for 100,000 minibatches (about 3 epochs).
Batch normalization was applied after each convolutional layer.

We trained SN-F and SN-R using the same data as SoundNet, but
randomly selected 1,000 videos from the validation data to speed up the
training. The two networks were implemented using the Keras [81] toolkit.
Even though they predicted object and scene distributions every 0.1 s, only
the predictions at 3 s, 8 s, 13 s and 18 s were used to compute the loss
function (total KL divergence of objects and scenes), measured in nats per
keyframe. We also used the Adam optimizer and a batch size of 64 videos,
but used a decaying learning rate and no momentum. Because the training
corpus was huge, we checked the loss on the 1,000-video validation set after
every 160 minibatches (about 0.5% of an epoch), and decayed the learning
rate by a factor of 0.9 when the minimum validation loss did not see any
update for 5 checkpoints. We found this decay helpful for the network to
reach a lower loss.

CHAPTER 3. SED WITH SEQUENTIAL LABELING 36

Figure 3.6: Training the variants of SoundNet: The evolution of the
validation KL divergence of SN-F and SN-R, the latter using either GRU or
LSTM cells.

We studied the effect of the recurrent cell type for SN-R, as well as the
effect of the activation function. It turned out that GRU cells [71] reached
a lower KL divergence than LSTM cells [70], but the activation function
did not make a difference for either SN-F or SN-R. In Fig. 3.6, we plot
the evolution of the validation loss of SN-F and SN-R, all using the “tanh”
activation function. SN-F converged faster thanks to its simpler structure;
by Checkpoint 175 (about 90% of an epoch), it reached a validation loss of
5.39. We trained SN-R until Checkpoint 300. With LSTM cells, the final
validation loss was 5.58; with GRU cells, 5.43. For comparison, the loss
of the original SoundNet on the 1,000-video validation set (3,418 frames)
was 5.15, but this number was measured after excluding about 2% of the
frames, because on these frames SoundNet predicted zero probabilities for
some object or scene classes.

We also studied the effect of batch normalization [66]. The original
SoundNet used batch normalization for all the convolutional layers, and
we found it essential to do the same. In the fully connected or recurrent
layers, batch normalization made no difference on the KL divergence, but
we found it to slightly improve the SED performance of SN-R. Consequently,
for the experiments in the next subsection, we used a SN-R with GRU cells,
the ReLU non-linearity and batch normalization in the recurrent layers, as
described in Table 3.1 (c). Because the non-linearity is not the final step
of computation in GRU cells, batch normalization was applied after all the
GRU computation. This is different from the convolutional layers, where
batch normalization was performed before the non-linearity.

CHAPTER 3. SED WITH SEQUENTIAL LABELING 37

0 50 100 150 200
0

0.1

0.2

Epoch

T
ra

in
in

g
Lo

ss

0 50 100 150 200
0

50

100

Epoch
T

ra
in

in
g

T
E

R

0 50 100 150 200
70

80

90

100

Epoch

V
al

id
at

io
n

T
E

R

0 50 100 150 200
70

80

90

100

Epoch

T
es

t T
E

R

Low−level features, w/o pre−training
Low−level features, with pre−training
SoundNet, layer conv5
SN−F, layer fc1
SN−R, layer gru1, with batch norm

Figure 3.7: Training the CTC-RNN for sound event detection: The evolution
of the training loss and the token error rate (TER) on the training, validation
and test sets, using either low-level acoustic features or transfer learning
features extracted from SoundNet or its variants. Note that low-level
features do not yet achieve convergence at 200 epochs. Also note the different
scales of the training TER vs the validation and test TERs, which indicates
severe overfitting. Best viewed in color.

3.3.3 SED Using Transfer Learning Features

We repeated the SED experiments in Section 3.2, replacing the 50-
dimensional low-level features with those extracted from SoundNet, SN-F
or SN-R. All the setups were identical except: (1) Pre-training was found
to be unnecessary, so we initialized the weight matrices of the CTC-RNN
using Glorot uniform initialization [82], and set the initial bias of the forget
gates to one [78, 79]; (2) The learning rate was initialized to 3.0, and was
decayed by a factor of 0.8 when the token error rate on the validation set
saw no update in 5 epochs; (3) The alignment hinting tolerance was set to
10 frames (i.e. each peak was allowed to occur within a 2-second window
around the ground truth).

Fig. 3.7 shows the evolution of the loss function and the TER on the
training, validation and test sets, using the “conv5” layer of SoundNet,

CHAPTER 3. SED WITH SEQUENTIAL LABELING 38

Feature Layer #Dims Train TER Val. TER Test TER

Low-level N/A 50 15.2 82.8 81.0

SoundNet conv5 256 2.3 76.6 74.0

SN-F

pool5 256 3.5 80.5 77.4
fc1 100 6.1 79.9 77.8
fc2 100 6.5 82.2 79.2
fc3 100 4.6 80.8 77.6

SN-R

pool5 256 3.0 78.9 74.9
gru1 200 3.0 77.8 78.4

gru1-BN 200 1.2 75.8 76.7
gru2 200 3.0 84.5 80.6

gru2-BN 200 2.3 82.3 79.0
gru3 200 90.6 96.4 96.4

gru3-BN 200 60.9 90.5 91.2

Table 3.2: SED performance when using transfer learning features: Token
error rate (TER) at convergence (Epoch 200) using features extracted from
different layers of SoundNet, SN-F and SN-R. “BN” means after batch
normalization. The TER values of low-level features are measured at
Epoch 500.

“fc1” layer of SN-F, and “gru1” layer of SN-R (after batch normalization),
respectively. For comparison, the curves produced using the low-level
features are also included. The transfer learning features learnt substantially
accelerated the convergence. When using low-level features, the CTC
network exhibited a “warm-up” stage in which it did not output anything;
the pre-training shortened this stage from 60 epochs to 40 epochs. But
with transfer learning features, the warm-up stage was almost non-existent.
The final test-set TER was also lower than using low-level features (see
Table 3.2). Actually, before we switched to SoundNet features, we had
tried several techniques on the CTC-RNN (including dropout [65] and data
augmentation) in order to improve the generalization, but none of these
techniques brought the test TER below 80%. The transfer learning features
broke this barrier easily; however, the gap between the training and test sets
remained huge.

Next, we looked at which layer of SoundNet or its variants yielded
features that led to the best SED performance. Table 3.2 shows the TER on
the training, validation and test sets after 200 epochs when using features
extracted from different layers. We found that features extracted from the
“conv5” layer of the original SoundNet remained competitive. With SN-
F, features extracted from the higher, fully connected layers yielded better
SED performance than low-level features, but still fell short of SoundNet’s
“conv5” layer. With SN-R, we first noticed that it was always better to

CHAPTER 3. SED WITH SEQUENTIAL LABELING 39

SN−F, layer pool5

0 5 10 15 20

SN−F, layer fc1

0 5 10 15 20

SN−F, layer fc2

0 5 10 15 20

Time (s)

SN−F, layer fc3

0 5 10 15 20

SN−R, layer pool5

0 5 10 15 20

SN−R, layer gru1

0 5 10 15 20

SN−R, layer gru2

0 5 10 15 20

Time (s)

SN−R, layer gru3

0 5 10 15 20

0

2

4

6

−1

0

1

−0.5

0

0.5

−0.5

0

0.5

0

2

4

0

2

4

6

0

2

4

0

2

4

Figure 3.8: The activations of the higher layers of SN-F and SN-R on a
validation recording. For the recurrent layers of SN-R, the activations have
been batch normalized.

extract features after batch normalization. We also noticed the counter-
intuitive phenomenon that the SED performance got worse as features were
extracted from higher layers.

We give a tentative explanation of this performance deterioration by
visualizing the activations of some higher layers of SN-F and SN-R in
Fig. 3.8. We can see a clear transition in the activations at 4.5 s, which
was preserved in all the layers of SN-F. In SN-R, however, the transition
became blurred out at the “gru2” layer, and disappeared altogether at
the “gru3” layer. This indicates that recurrent layers, which have access

CHAPTER 3. SED WITH SEQUENTIAL LABELING 40

to information at distant moments, might not be good at representing
local information. The fully connected layers of SN-F, on the other hand,
maintained a reception field of 0.34 seconds, and therefore were able to
concentrate on what happened within this time window.

3.4 Error Analysis

The limited improvement in the token error rate (81% to 74%) prompted us
to conduct a thorough error analysis of the system predictions. We computed
an error rate for each sound event type from the predictions of the CTC-
RNN with original SoundNet features to understand what was happening
with the system.

Even though the token error rate metric consists of insertion, deletion
and substitution errors, it is hard to attribute the individual errors to each
sound event type. This is because there can be multiple alignments that
give the same token error rate. For example, if the reference sequence is ABC
and the hypothesized sequence is DE, then there are three alignments that
all give a TER of 100%:

ABC ABC ABC

DE- D-E -DE

But they differ on which token is deleted and which are substituted. To
avoid this arbitrariness, we compute the miss rate and false alarm rate of
each type of token, defined as the number of misses or false alarms divided
by the the number of occurrences in the reference. A token is considered to
be missed if it occurs in the reference but does not align with an identical
token in the hypothesis; a token is considered to be a false alarm (FA) if it
occurs in the hypothesis but does not align with an identical token in the
reference. In the example above, the tokens A, B, and C are all considered
to have one miss, and the tokens D and E to have one false alarm, regardless
of the alignment. There is still a little arbitrariness in this definition if one
considers the case of flipping two tokens, e.g. when the reference is AB and
the hypothesis is BA. There are again three alignments that all give a TER
of 100%:

AB AB- -AB

BA -BA BA-

A: 1 miss, 1 FA A: 1 miss, 1 FA

B: 1 miss, 1 FA B: 1 miss, 1 FA

But the counts of misses and false alarms for the tokens A and B are
different. Luckily we found that such flipping occurred rarely enough in our
hypotheses, so the fluctuation in the miss and FA rates caused by choosing
an alignment arbitrarily could be ignored.

In Fig. 3.9 we plot the miss and FA rates of each sound event type. Each

CHAPTER 3. SED WITH SEQUENTIAL LABELING 41

0

200

400

600

800

1000

1200

1400

1600

1800

O
c
c
u
rr

e
n
c
e
s
 i
n
 t
ra

in
in

g
 d

a
ta

0

20

40

60

80

100

120

Sound event

M
is

s
 /
 F

A
 /
 e

rr
o
r

ra
te

 (
%

)

sp
ee

ch

no
is
e_

on
go

in
g

no
is
e_

pu
ls
e

m
um

bl
e

hu
m

an

sp
ee

ch
_n

e

no
is
e_

na
tu

re

an
im

al

w
hi
te

_n
oi
se

cr
ow

d

ch
ee

r

en
gi
ne

no
is
e_

to
ne

ra
di
o

m
us

ic

m
us

ic
_s

in
g

si
ng

in
g

Miss rate

FA rate

Error rate

Figure 3.9: The miss rate, false alarm rate and total error rate of each
sound event type (lines). The bars indicate the number of occurrences in
the training data.

sound event type actually corresponds to two types of tokens (an onset token
and an offset token); we plot the average miss and FA rates of the two. The
total error rate of each event type, defined as the sum of the miss and
FA rates, is also plotted in the figure. The event types are ordered by the
number of occurrences in the training data. It can be seen that the miss rate
is negatively correlated with the number of occurrences, while the FA rate is
positively correlated but has a smaller range. Put together, the total error
rate is lower for more frequent sound event types. It turns out, however,
that only the three most frequent sound event types (speech, ongoing noise,
pulse noise) obtained an error rate less than 100%. All the other sound event
types, due to their insufficient number of occurrences (mostly around 200),
contributed adversely to the token error rate. This result demonstrates how
much the success of a CTC model can depend on the availability of sufficient
training data. The size of the corpus may need to be increased by four or
five times before a significant reduction of the TER can be observed.

Another problem revealed by the error analysis is that, some types of
long-lasting sound events, such as “music” and “crowd”, are identified as
rare events in Fig. 3.9 because of their small number of occurrences, even
though they cover a long total duration as shown in Fig. 1.3 (b). In the CTC
models we used, each occurrence of a sound event provided two target CTC
tokens at the boundaries, while the long duration of the events provided no
supervision. This indicates we were not making sufficient use of the duration

CHAPTER 3. SED WITH SEQUENTIAL LABELING 42

of long events.
Nonetheless, we should emphasize again the effectiveness of the CTC-

RNN in detecting pulse noises, an example of transient noises. The CTC-
RNN system in Sec. 3.3 obtained an error rate of 98% for pulse noises (65%
miss + 33% FA), while the frame-wise system in Sec. 3.1 got 107% (90%
miss + 17% FA). Even though these numbers are not directly comparable,
“pulse noise” was the third best detected sound event type with the CTC-
RNN, while it fell in the long tail of “badly detected” event types with the
frame-wise system.

3.5 Proposed Work

Current research on SED with CTC suffers from two problems: there amount
of training data available is limited, and there isn’t a principled way to
exploit long-lasting sound events. It is also crucial for the model to maintain
a good temporal resolution in order to localize sound events in time, but we
have observed that the peaks CTC produces tend to cluster together without
alignment hinting, and that the activations of the higher layers of SN-R get
blurred out across time. I propose to tackle these problems in the last year
of my PhD.

3.5.1 Semi-Supervised Training with More Data

To increase the amount of training data, I plan to automatically discover
reliable training instances from large but weakly-labeled data. Google Audio
Set [52] is an abundant source of such data. As introduced in Sec. 1.2,
Google Audio Set contains about 600 times as much data as the Noiseme
corpus (v2). For example, the corpus contains more than 4,000 instances of
cheering, and more than 15,000 instances of engine noise.

The Google Audio Set is only labeled with the presence or absence of
each sound event type in each 10-second excerpt. This raises the question of
how we can incorporate this data into a CTC system that accepts sequential
labeling. I propose two methods to generate strong labeling on Google Audio
Set, and then derive sequential labeling from there. The first method is to
train a SED system with presence/absence labeling on Google Audio Set,
which is the content of Chapter 4. Even though trained with weak labeling,
this system should be able to localize sound events in the Audio Set data,
thus producing labeling suitable for CTC. The second method is to run
existing SED systems (including the frame-wise system in Sec. 3.1 and the
CTC system in Sec. 3.3) on the Audio Set data to discover candidate sound
event instances. Both approaches can be subsumed under the framework
of semi-supervised learning. The sequential labeling generated by the two
methods will no doubt be noisy, but the two methods will be able to validate
each other to select reliable recordings to add into the training data.

CHAPTER 3. SED WITH SEQUENTIAL LABELING 43

Using Google Audio Set has another merit: the recordings in it last
only 10 seconds, which is much shorter than the average recording length of
the Noiseme corpus (75 s). At this length, we can hopefully eliminate the
“alignment hinting” introduced in Sec. 3.2.

The incorporation of Google Audio Set in the training data will allow
me to re-evaluate the performance of the CTC-RNN for SED, the benefits
of transfer learning based features, and the effect of using fully connected
or recurrent layers on top of convolutional layers. Such evaluation will not
only be done with the TER metric, but also with more standard metrics for
SED, such as segment-based and event-based error rate and F1 [83]. Besides
measuring the overall performance, I will also look at the performance of
individual sound events, to see whether CTC is equally effective for transient,
continuous and intermittent sound events.

3.5.2 Better Exploiting Long Sound Events

While CTC models are good at detecting short events, currently there is no
systematic way of exploiting long events. Even though a sound event may
last for as long as one minute, a CTC network can only make use of the
start and end tokens at the two boundaries, and may not spend any effort
learning what a long event sounds like when it is ongoing.

To overcome this problem, I propose to add a “middle” token for each
sound event type, in addition to the existing “start” and “end” tokens.
The CTC network is required to generate “middle” tokens during the
timespan of long events once every m seconds. For example, if a dog barks
while a car passes by, and the car noise lasts for a long time, the target
label sequence may be: engine start, engine middle, animal start,

animal end, engine middle, engine end. The length of the interval
between consecutive “middle” tokens, m, will need to be optimized by
experiment.

3.5.3 Improving the Temporal Localization of CTC

It has been shown in Sec. 3.2.2 that the peaks predicted by CTC tend
to cluster together without alignment hinting, instead of aligning with the
actual boundaries of sound events. This is because the recurrent layers
underneath the CTC layer can propagate information across time, making
the prediction at each frame depend not only on the current frame but also
on information from the past and the future. While it is sometimes necessary
to look backward and forward in time to decide which sound event is active
at the current frame, local information is also important for obtaining a
correct alignment. The vanilla CTC model is not good at the latter.

In [84], a parallel structure has been proposed to improve the temporal
localization power of a CTC-based speech recognizer. A stack of local, fully

CHAPTER 3. SED WITH SEQUENTIAL LABELING 44

connected layers is placed in parallel with the usual recurrent layers. Each
of the two branches has its own sigmoid output layer; the values of the
two output layers are averaged before computing the CTC loss function.
Because the frames in the fully connected branch have limited reception
fields, the combined prediction is forced to give sufficient consideration to
the local information. This structure has been shown to moderately reduce
the word error rate, but significantly improve the alignment. The same idea
of training a feed-forward branch that focuses on local information in parallel
with a recurrent network in order to improve its temporal localization power
has also been applied to SED in [85].

I would like to apply this parallel structure to my CTC network for SED
as well. Hopefully this will make the predicted peaks align better with the
actual event boundaries, and even make alignment hinting unnecessary.

3.5.4 Training a Transfer Learning Feature Extractor that
Maintains Temporal Resolution

Although transfer learning based features extracted from convolutional
and/or recurrent neural networks can exhibit superior performance in SED
compared to low-level features, they must maintain a sufficient temporal
resolution in order to localize sound events in time. However, current trans-
fer learning networks do not have the necessary temporal resolution: the
original SoundNet tends to make similar predictions at different keyframes
in the same recording, and our SN-R network exhibits “blurred” activations
at the higher recurrent layers.

My personal experience with tuning hyperparameters for RNNs indicates
that this may be a result of underfitting. When the network is trained with
the SGD algorithm, this can happen when the magnitude of the gradient is
large in the initial stage of training but decreases fast with time: in order to
avoid gradient explosion in the initial stage, the learning rate must be set to
a low value, which results in slow learning in subsequent epochs. This could
be remedied with gradient clipping and a larger learning rate.

I will try re-training the SN-R network using the SGD algorithm with
gradient clipping, and/or look for solutions to the underfitting problem when
using the Adam optimizer.

3.5.5 Comparing and Combining Different Transfer Lear-
ning Features

In Chapter 4, I will train an end-to-end deep network for SED on the Google
Audio Set. This network bears many similarities with SoundNet: they are
both trained with a different objective than SED with sequential labeling,
and they are trained with a similar amount of training data. As such,
the lower layers of both networks can be treated as a transfer learning

CHAPTER 3. SED WITH SEQUENTIAL LABELING 45

feature extractor for SED with sequential labeling. Nevertheless, there is
an important distinction between the two networks: the network trained on
Audio Set is also trained for SED, while SoundNet is trained on an out-of-
domain image learning task. An interesting comparison would be to see if
the features learned by the former would yield better SED performance than
the latter because they encodes more relevant information. The two types
of features may also be combined to further improve the performance.

Chapter 4

Sound Event Detection with
Presence/Absence Labeling

This chapter studies the learning of sound events from presence/absence
labeling. This type of labeling is even weaker than sequential labeling; it is
only known whether each type of sound event is present or absent in each
audio recording.

SED from presence/absence labeling can be regarded as a multiple
instance classification (MIC) problem [36], which falls into the broad
framework of multiple instance learning (MIL). In MIC, we do not have
the ground truth labels for individual instances. Instead, the instances are
grouped into bags, and labels are known for the bags only. The relationship
between the bag label and the instance labels may vary; a common case
is the standard multiple instance (SMI) assumption: a bag is labeled as
positive if it contains at least one positive instance, and negative if it only
contains negative instances. The task of MIC is to learn a classifier either
for bags or individual instances.

We formulate polyphonic SED from presence/absence labeling as a MIC
problem as follows. First, the prediction of each sound event type is carried
out independently, even though they may depend on a certain shared high-
level representation of the audio. For example, the prediction may be
performed with a neural network with a separate output layer for each sound
event type but shared hidden layers. Now polyphonic SED becomes a set
of binary classification problems, one for each sound event type. We regard
each audio recording as a bag, and the frames in the recording as instances.
A bag is labeled as positive if and only if a certain sound event type is
active in the corresponding recording. We learn an instance-level classifier
that makes a prediction for each individual frame, which can be used to
localize sound events in time. The instance-level predictions are aggregated
(or “pooled”) into a bag-level prediction, which can be compared with the
bag labels to form a loss function. Two commonly used pooling functions

46

CHAPTER 4. SED WITH PRESENCE/ABSENCE LABELING 47

are the max function [37, 38] and the noisy-or function [39–41]; we compare
the two functions both theoretically and empirically.

The content of this chapter is organized as follows. In Sec. 4.1, we give
the motivation of the max and noisy-or pooling functions in the framework of
multiple instance learning (MIL), and point out some plausible advantages
of the noisy-or pooling function. To compare the two pooling functions,
we conduct proof-of-concept experiments on a speech recognition task on
TED talks in Sec. 4.2. This task is easier than polyphonic SED because
phonemes in speech do not overlap, and they have a smaller variation in
both duration and acoustic characteristics than sound events. Surprisingly,
max pooling succeeds on this task while noisy-or pooling fails. We then
analyse the results and discuss some defects of noisy-or pooling that render
it unsuitable for sequence learning tasks. In Sec. 4.3, we propose to apply
MIL with the max pooling function to polyphonic SED on large corpora,
e.g. the Google Audio Set. We propose to localize the sound events in
time even though the labels do not provide any timing information, and to
automatically classify sound events as transient, continuous or intermittent.

4.1 Pooling Functions in Multiple Instance Lear-
ning

4.1.1 Motivation of the Max and Noisy-Or Pooling Functions

Let’s consider a bag of instances in a multiple instance classification problem.
Let x1, . . . ,xn be the instances, and t be the label of the bag. For
convenience, we may use either {1,−1} or {1, 0} to represent the labels
of the positive and negative classes. Let f be an instance-level classifier,
and it makes a prediction yi = f(xi) for each instance. Training of the
classifier means ensuring that the yi’s and t satisfy certain constraints, or
minimizing a loss function that depend on the two.

Suppose the classifier is a support vector machine (SVM) f(x) = wTx+
b ∈ R. If the bag is positive (t = 1), then at least one of the yi’s must satisfy
yi ≥ 1. If the bag is negative (t = −1), then all the instances must satisfy
yi ≤ −1. The two cases may be subsumed by a single equation:

t ·max
i
yi ≥ 1 (4.1)

If we aggregate the instance-level predictions yi into a bag-level prediction
using the following equation:

y = max
i
yi (4.2)

then the multiple instance SVM reduces to an ordinary SVM on bags. This is
the motivation of the “max pooling” function. The max pooling function is

CHAPTER 4. SED WITH PRESENCE/ABSENCE LABELING 48

the natural choice for max-margin classifiers such as SVMs. Both SVMs and
the max pooling function exemplify the “winner-takes-all” idea: in SVMs,
the decision boundary depends solely on the extreme instances (i.e. support
vectors); with the max pooling function, the bag-level prediction depends
solely on the maximum instance, and other instances do not matter.

With classifiers other than SVMs, however, “max pooling” may not be
the pooling function of first choice. Let’s consider a probabilistic classifier g
(e.g. a neural network), whose predictions yi = g(xi) ∈ [0, 1] indicates the
probability of xi being a positive instance. As listed in Table 2.1, for a binary
classification problem, the most common loss function is cross-entropy. The
loss function on the bag in question is

L = −t log y − (1− t) log(1− y) (4.3)

where t ∈ {0, 1} is the bag label, and y is the predicted probability of the
bag being positive. The SMI assumption states that a bag is negative only
if all of its instances are negative. If we assume all the instances in the bag
are independent, the bag-level prediction y can be decomposed as

y = 1−
∏
i

(1− yi) (4.4)

This is called the “noisy-or” pooling function, because the equation effecti-
vely implements the logical “or” gate if all the yi’s were binary. The noisy-or
pooling function is the natural choice with probabilistic classifiers, if we can
assume independence between instances in a bag.

To summarize, the max and noisy-or pooling functions are motivated
by different types of classifiers. The max pooling function is suited for
SVMs, and is desirable if we prefer a “winner-takes-all” behavior; the noisy-
or pooling function is suited for probabilistic classifiers, and every frame
plays a role in the loss function. Since neural networks produce probabilistic
predictions, the noisy-or pooling function seems preferable. However, in
the case of sound event detection, the assumption of independence between
instances in a bag is questionable because the instances are frames in a
recording, and they are clearly correlated with each other.

4.1.2 Relationship Between the Noisy-Or Pooling Function
and CTC

In Chapter 3, we used CTC to deal with the incompleteness of sequential
labeling. Naturally, we wonder if CTC can also be used to deal with the
incompleteness of presence/absence labeling. In this subsection, we show
that a connection can be established between CTC and the noisy-or pooling
function by extending the CTC model.

First we take a step back: we no longer model the boundaries of sound
events, but return to modeling the events themselves. Suppose an audio

CHAPTER 4. SED WITH PRESENCE/ABSENCE LABELING 49

A

-

-

B

-

B

-

B

-

-

A

-

B

-

A

-

B

-

B

B

-

B

-

A

B

-

-

A

-

B

-

A

-

B B

-

A

(a) (b) (c)

Figure 4.1: (a) CTC state graph accepting a single label sequence ABB. (b)
CTC state graph accepting three label sequences ABB, BAB, and BBA. (c)
Determinized and minimized version of (b).

recording contains the siren of an ambulance (A) and two dog barks (B). If
the order of the three sound events are unspecified, or if they overlap in
time, then the label sequence of the recording becomes ambiguous. Any of
the output sequences ABB, BAB, and BBA is acceptable, and we may want to
maximize the total probability of the three output sequences.

This maximization problem is solvable by extending the state graph of
CTC. Fig. 4.1 (a) shows the CTC state graph when the only acceptable
label sequence is ABB. An arc is drawn between two states if it is allowed
to transition from one state to the other in one time step. As indicated
by Eq. 2.13, transitions are allowed between adjacent states, or states that
are two steps apart and do not carry the same token. When computing the
alpha trellis, the shaded states are initialized with non-zero probabilities at
the first time step, and the total probability of the label sequence is obtained
by summing the alpha values of the bold states at the last time step. When
multiple label sequences are acceptable, these sequences may be juxtaposed
in the state graph as in Fig. 4.1 (b). Treating the state graph as a finite state
automaton, it may be determinized and minimized to the form in Fig. 4.1
(c).

It can be easily imagined that as the number of sound events in a
recording grows, the number of paths in the CTC state graph will grow

CHAPTER 4. SED WITH PRESENCE/ABSENCE LABELING 50

factorially. To avoid this problem, we can create a separate CTC output
layer for each sound event type above the shared recurrent layers; each CTC
output layer has a single unit that predicts the probability of the event token
(one minus which is the probability of the blank token). In the example in
the paragraph above, the CTC output layer for ambulance should accept
the label sequence A, the CTC output layer for dog barks should accept
the label sequence BB, while all the other CTC output layers should accept
empty label sequences (denoted by ε). The loss function on the recording
in question will be the total negative log-likelihood of the all CTC output
layers:

L = − logP (A)− logP (BB)− logP (ε) . . . (4.5)

Such a model is suitable for a form of weak labeling that lies between
sequential labeling and presence/absence labeling: what we know is the
number of occurrences of each sound event type in each recording. We call
this count labeling, and apply CTC to a speech recognition task with count
labeling in Sec. 4.2.

In the case of presence/absence labeling, even the number of occurrences
of each sound event type is unknown. Therefore, the CTC output layer for
ambulance should accept all label sequences that contain one or more tokens
A, and compute their total probability P (A+) = P (A)+P (AA)+P (AAA)+
This is equal to one minus the probability of the empty label sequence.
In CTC, it is assumed that the frames in a utterance are conditionally
independent given the states of the hidden layers, and we make the same
assumption here. Let yi(A) be the probability of the token A at the i-th
frame, then the desired total probability is given by

P (A+) = 1−
∏
i

[1− yi(A)] (4.6)

Likewise, the output layer for an event C apart from ambulance and dog
barks should compute the probability of the empty label sequence ε:

P (ε) =
∏
i

[1− yi(C)] (4.7)

We can see that Eqs. 4.6 and 4.7 have the same form as the noisy-or pooling
function (Eq. 4.4).

To summarize, we have shown that the noisy-or pooling function is
related to CTC, if we make the following modifications and generalizations
to CTC:

1. Break up a CTC layer into many parallel CTC layers, one for each
token;

2. Allow the token in each CTC layer to occur any positive number of
times.

CHAPTER 4. SED WITH PRESENCE/ABSENCE LABELING 51

4.1.3 The Gradient Flow

A key step in the training of RNNs is the computation of the gradient, i.e.
error back-propagation. In this subsection, we compare the gradient flow
of the max and noisy-or pooling functions to see which one makes training
easier.

Let t ∈ {0, 1} be the ground truth label for a bag, and y ∈ [0, 1] be
the bag-level prediction. The bag-level prediction is aggregated from the
instance-level predictions y1, . . . , yn ∈ [0, 1], using either the max (Eq. 4.2)
or noisy-or (Eq. 4.4) pooling function. The instance-level predictions are
the output of sigmoid units; let the input to the sigmoid units be z1, . . . , zn,
then we have yi = sigm(zi). Now we want to compute the error signals in
back-propagation, i.e. the derivative of the loss function

L = −t log y − (1− t) log(1− y) (4.8)

with respect to the zi’s. For convenience, we point out that the derivative
of the sigmoid function is ∂yi/∂zi = yi(1− yi).

When using the max pooling function, the bag-level prediction y is
only dependent on the single maximum instance-level prediction. Let the
subscript of this instance be k, then the loss function is:

L = −t log yk − (1− t) log(1− yk) (4.9)

The derivative of L w.r.t. zk is:

∂L

∂zk
= − t

yk
· yk(1− yk) +

1− t
1− yk

· yk(1− yk) (4.10)

= yk − t (4.11)

while the derivative w.r.t. other zi’s are all zero.
The derivative in Eq. 4.11 makes sense. When the bag is positive (t = 1),

the k-th instance receives a negative gradient, and the gradient descent
algorithm will pull zk up, so yk gets closer to 1. When the bag is negative
(t = 0), the gradient is positive and zk will be pushed down. The amount
of boost or suppression that zk receives is proportional to the difference
between the prediction yk and the ground truth t.

A short-coming of the max pooling function, however, is that the error
signal is only given to the single instance reaching the maximum. In the
case of SED, the underlying recurrent layers can alleviate this problem to
some extent, because they can pass on the error signal across time until the
forget gate is closed. This usually spans the duration of one sound event
occurrence. However, if a sound event occurs multiple times in a recording,
then only the one that yields the maximum frame-level prediction will receive
an error signal.

CHAPTER 4. SED WITH PRESENCE/ABSENCE LABELING 52

When using the noisy-or pooling function, the loss function takes the
following form:

L =

{
− log [1−

∏
i(1− yi)] , if t = 1

− log
∏

i(1− yi), if t = 0
(4.12)

This depends on all the instance-level predictions. Its derivative w.r.t. any
zi is:

∂L

∂zi
=

{
−yi(1− y)/y, if t = 1
yi, if t = 0

(4.13)

Let’s analyze what effects this gradient has on the learning process.
When the bag is negative (t = 0), the gradient is positive, so all zi’s will be
pushed down, in proportion to the instance-level predictions yi. When the
bag is positive (t = 1), the gradient is negative, and all zi’s will be boosted.
The strength of the boost depends on two factors. One is (1− y)/y, which
involves the bag-level prediction. The farther from 1 the bag-level prediction
y is, the more eager the model is to boost up the instance-level predictions.
The other factor is yi itself. At first glance this may seem counter-intuitive:
the instances whose yi are already closer to 1 get boosted more. However,
we should note that this is a multiple instance learning scenario, and we do
not need to make all the instances positive in a positive bag. Instead, we
only encourage the “hopeful” instances, and leave alone the instances that
would like to stay negative.

Compared with the max pooling function, the noisy-or pooling function
sends an error signal to every instance in a bag, instead of the single one with
the largest instance-level prediction. In addition, it adjusts the magnitude
of the error signals according to both the instance-level predictions and the
bag-level prediction. It may be hoped that the noisy-or pooling function
allows the gradient to flow more easily through the network, which may
accelerate the training.

To sum up this section, we have seen that the noisy-or pooling function
fits more naturally with probabilistic classifiers, is an extension of the
CTC model, and may facilitate the gradient flow. Nevertheless, it requires
independence between instances within a bag, which may not hold for
sequential learning tasks such as SED. We conducted experiments to test out
the relative advantages and disadvantages of the max and noisy-or pooling
functions.

4.2 Proof-of-Concept Experiments with Speech
Recognition

4.2.1 Experiment Setup

To empirically compare the “max” and “noisy-or” pooling functions, we
conducted a set of proof-of-concept experiments with a speech recognition

CHAPTER 4. SED WITH PRESENCE/ABSENCE LABELING 53

task. To be precise, this was only a phoneme recognition task, because both
the reference and the network output were sequences of phonemes instead
of words. We used phonemes as substitutes for sound events, although there
were two notable differences: phonemes are normally short, and they do not
overlap.

The experiments were conducted on the TEDLIUM v1 corpus1. The
corpus consists of 206 hours of training data, 1.7 hours of development data,
and 3.1 hours of testing data. We used 95% of the training data for training,
and reserved the remaining 5% for validation. Ground truth phoneme
sequences were generated for all the utterances from the transcriptions and
the dictionary; we only retained the 39 “real” phonemes and discarded all
noise markers such as “breath” and “cough”.

We first tried to replicate a baseline system2 in the EESEN toolkit
[86]. Using our own Theano implementation, we trained a network with
the same structure as the baseline system. The network consisted of five
bidirectional LSTM layers, with 320 memory cells in each direction of each
layer. The input layer had 40 neurons, which accepted 40-dimensional
filterbank features3. The CTC output layer consisted of 40 neurons arranged
in a softmax group, corresponding to the 39 phonemes plus a blank token.
We used the per-frame negative log-likelihood as the loss function, and
trained the network using the stochastic gradient descent (SGD) algorithm
with a Nesterov momentum of 0.9. Each minibatch contained 20,000 frames;
an epoch consisted of about 2,000 minibatches. The learning rate started at
3, stayed constant for 12 epochs, and was then halved each epoch for another
12 epochs. Gradient clipping was applied with a threshold of 10−4. Simple
best path decoding was used to generate hypothesized phoneme sequences,
and the performance of the network was measured with phoneme error rate
(PER).

The supervision used by the baseline system can be regarded as se-
quential. We then trained three other networks that used weaker forms of
supervision. One of these networks used count labeling : instead of knowing
the phoneme sequence for each training utterance, it was only told how many
times each phoneme occurred in each utterance. The other two networks
used presence/absence labeling, i.e. they only knew whether each phoneme
was present or not in each utterance. These two networks used the max and
noisy-or pooling functions, respectively. The structures of these networks
were kept identical to the baseline network except for the output layer.
Instead of having 40 neurons arranged in a softmax group, the output layer of
the three weakly supervised networks contained 39 neurons with the sigmoid
activation function. This can be regarded as 39 parallel CTC output layers,

1The corpus can be downloaded at http://www.openslr.org/resources/7/.
2https://github.com/srvk/eesen/tree/master/asr_egs/tedlium/v1
3Unlike the EESEN system, we did not use delta and double delta features.

http://www.openslr.org/resources/7/
https://github.com/srvk/eesen/tree/master/asr_egs/tedlium/v1

CHAPTER 4. SED WITH PRESENCE/ABSENCE LABELING 54

each responsible for a single phoneme. With count labeling, the target label
sequence of each CTC layer was the corresponding phoneme repeated the
specified number of times; with presence/absence labeling, each output layer
must generate the corresponding phoneme any positive number of times
when the label is “present”, and zero times when the label is “absent”.

The change in the output layer also caused a change in the loss
function. For the count labeling system, the CTC output layers were
not degenerate, so we still used the per-frame negative log-likelihood, and
also averaged it across all the phonemes. With presence/absence labeling,
however, the output layer essentially degenerated to sequence-level binary
classification. For the max pooling network, we used cross-entropy averaged
across both sequences and phonemes; for the noisy-or pooling network,
since the sequence-level probabilities could be decomposed into a product of
frame-level probabilities, we used cross-entropy averaged across frames and
phonemes.

The different loss functions of the networks might range in different
orders of magnitude, resulting in a drifting of the optimal hyperparameters
for training. To limit the effort of hyperparameter tuning, we only tuned
the gradient clipping limit and the initial learning rate, and kept everything
else (e.g. batch size, momentum, learning rate schedule) identical to the
baseline system.

We still used the best path decoding algorithm for the systems trained
with count and presence/absence labeling, i.e. picking the most probable
phoneme at each frame, then reducing this alignment to a phoneme sequence
by removing repeating phonemes and blank tokens. A difference from
the baseline system is that there was no blank token in the CTC output
layer. We dealt with this difference with the following strategy: if the most
probable phoneme at a frame had a probability smaller than 0.5, we regarded
this frame as emitting a blank token.

4.2.2 Experiment Results

For each of the systems trained, the optimal hyperparameters, as well as the
PERs on different parts of the data, are listed in Table 4.1. The evolution
of the cross-validation PER of each system is plotted in Fig. 4.2. When we
compare systems in this section, we will mainly look at the cross-validation
PER; the development and test PERs follow a similar trend.

First, we compare our own implementation of the baseline system
using sequential labeling with the EESEN implementation. After a single
epoch, the system we implemented reached 28.8% PER on the training
set and 30.2% on the cross-validation set; the final PER was 4.8% on the
training set and 15.4% on the cross-validation set, outperforming the EESEN
implementation.

Second, we compare the count labeling system with the baseline. The

CHAPTER 4. SED WITH PRESENCE/ABSENCE LABELING 55

System
Hyperparameters Phoneme Error Rate
Grad.clip Init.LR Train Valid. Dev. Test

Baseline (EESEN) 13.1 18.5 19.3 18.4
Baseline (Theano) 10−4 3 4.8 15.4 13.9 14.9

Count labeling 10−6 100 30.1 34.5 31.7 32.5
Max pooling 0.01 0.3 40.5 43.0 39.7 40.7

Noisy-or pooling 10−8 3000 91.0 91.6 91.6 91.5

Table 4.1: The optimal hyperparameters and phoneme error rates of the
various systems on the TEDLIUM corpus.

0 5 10 15 20 25
10

20

30

40

50

60

70

80

90

100

Epoch

C
ro

ss
−

va
lid

at
io

n
P

E
R

 (
%

)

Baseline (EESEN)
Baseline (Theano)
Count labeling
Max pooling
Noisy−or pooling

Figure 4.2: Evolution of the cross-validation PER of the various systems on
the TEDLIUM corpus.

final PER (34.5%) was higher than the baseline system, but still reasonable.
This means the modified CTC-RNN was able to learn from a weaker form of
labeling, even though not as well as the baseline. In the first few epochs, the
count labeling system exhibited high PERs above 90%. This is the “warm-
up” stage of CTC systems; it lasted longer because count labeling is weaker
than sequential labeling.

Next, we look at the max pooling system trained with presence/absence
labeling. Because presence/absence labeling is again weaker than count
labeling, the final PER (43.0%) was higher than that of the count labeling
system (34.5%), but this number still indicates that the max pooling system
was able to learn to detect phonemes. Also remarkable is that the max
pooling system reached a PER of 82.1% after the first epoch. There was no
“warm-up” stage, because max pooling is not related to CTC.

CHAPTER 4. SED WITH PRESENCE/ABSENCE LABELING 56

System Decoded Phoneme Sequence PER
Ground truth V EH R IY IH K S T R IY M T ER EY N

Baseline (Theano) ER IY EH K S T R IY M TH R IY 8/15
Count labeling EH R HH IH S T R IY M TH R IY 7/15

Max pooling R IY HH IY IH S T R IY M TH R IY 9/15
Noisy-or pooling S S TH S 14/15

Table 4.2: The predicted phoneme sequences of the various systems on
an example utterance. The ground truth transcription is “very extreme
terrain”.

Finally, we look at the noisy-or pooling system. Despite the “advan-
tages” we had found, this system was not able to learn effectively with
whatever configuration of hyperparameters. The PER decreased very slowly,
and after 24 epochs, the best PER we observed was still above 90%. If we
kept the learning rate constant and trained the model for more epochs, the
PER would stabilize between 83% and 86%.

Table 4.2 shows the predicted phoneme sequences of the various systems
on an example utterance in the cross-validation set, and Fig. 4.3 shows the
underlying frame-wise predictions. Comparing Fig. 4.3 (b) and (c), we can
see that the predictions of the CTC-based count labeling system exhibits
a similar pattern to the baseline system: predictions come in sharp peaks
that cluster together. The predictions of the max pooling system, shown in
Fig. 4.3 (d), however, displays a very different pattern. Each phoneme is
represented by a wide peak with a flat top, even overlapping with each other.
This is actually a desired property, because the span of the peak can indicate
the onset and offset of each phoneme. The noisy-or pooling system, whose
predictions are shown in Fig. 4.3 (e), seems not to have learnt anything. All
but three phonemes are predicted with a negligible probability throughout
the utterance.

4.2.3 Analysis: Why Noisy-Or Pooling Fails

We have observed the symptoms of the noisy-or pooling system: it trained
slowly, and preferred to predict most phonemes as negative. We suspected
that this indicated the system had difficulty in starting to learn. We tried
initializing the network parameters to the values after one epoch of max
pooling training (with a cross-validation PER of 82.1%), but we observed
that noisy-or training immediately brought the PER back to above 90%.

It turned out that the problem lay with the combination of the cross-
entropy loss function and the noisy-or pooling function. When used with
noisy-or pooling, the cross-entropy loss function is excessively harsh on false
alarms but lenient on misses, which was the reason why the noisy-or pooling
system preferred making negative predictions. This problem does not exist

CHAPTER 4. SED WITH PRESENCE/ABSENCE LABELING 57

Figure 4.3: The frame-wise predictions of the various systems on an example
utterance. The ground truth transcription is “very extreme terrain”.
Different phonemes are plotted in different colors. Peaks are annotated
with their corresponding phonemes; phonemes in parentheses did not make
it into the predicted phoneme sequences.

CHAPTER 4. SED WITH PRESENCE/ABSENCE LABELING 58

when using the max pooling function. We will illustrate this problem by
looking at some phonemes in Fig. 4.3 (d) and (e), and computing the cross-
entropy loss function using both pooling functions.

Harsh on false alarms: Let’s look at the phoneme TH. This phoneme
does not occur in the ground truth phoneme sequence, so both the max
pooling system and the noisy-or pooling system made a false alarm around
0.95 seconds. The max pooling system generated a tall and wide peak.
Denote by yi the predicted probability of the phone TH at frame i. For
the seven frames 90 ≤ i ≤ 96, yi was above 0.999; the largest value was
y93 ≈ 1 − 2 × 10−7. When using the max pooling function, this meant a
loss of − log(2× 10−7) ≈ 15.5, while with the noisy-or pooling function, this
meant a loss of at least − log(0.001) × 7 ≈ 48. The large loss arises from
the multiplication in the noisy-or pooling function (y = 1 −

∏
i(1 − yi)).

To avoid such large losses, the noisy-or pooling system generated a much
lower and narrower peak than the max pooling system. The same situation
happened with the phonemes HH and AH: the max pooling system generated
a moderate peak, while the noisy-or pooling system generated no peak at
all.

Note that the multiplication in the noisy-or pooling function results from
the assumption of independence between instances in a bag. In the case
of speech recognition or sound event detection, the instances are frames
in a recording. Phonemes and sound events typically last more than one
frame, causing strong correlation between the predictions on these frames.
In such cases, we would want to base the loss function only on the heights
of the peaks, regardless of their widths. From this perspective, the max
pooling function is better suited for sequence learning problems, where the
assumption of independence fails.

Lenient on misses: Let’s look at the phoneme IH. This phoneme is in
the ground truth phoneme sequence, and the max pooling system correctly
predicts a peak (although not very tall) at 0.32 s. The probability curve
predicted by the noisy-or pooling system is hardly visible in Fig. 4.3 (e);
actually the yi’s for this phoneme fluctuates around 0.02. Even though this
value is negligible on itself, when it is repeated throughout the utterance,
it can produce a surprising effect. Suppose yi = 0.02 for all the 130 frames
of the utterance. Then the predicted probability of the bag being positive,
i.e. the probability that the phoneme IH occurs anywhere in the utterance,
will be y = 1 − (1 − 0.02)130 ≈ 0.93 according to the noisy-or pooling
function. In other words, even though the noisy-or system does not predict
the phoneme IH at any frame, it believes that it has predicted it somewhere
in the utterance, and will not make an effort to correct this miss.

A more extreme example is the phoneme IY. The frame-level predictions
fluctuate around 0.2, which means the probability of the bag being positive
is y = 1− (1− 0.2)130 ≈ 1− 2.5× 10−13. This does not only mean that the
noisy-or pooling system falsely believes that it has predicted the phoneme

CHAPTER 4. SED WITH PRESENCE/ABSENCE LABELING 59

IY in the utterance, but also has a bad effect on the gradient. Recall that
the error signal at the i-th frame is ∂L/∂zi = −yi(1−y)/y (Eq. 4.13). With
the bag-level prediction y close to 1, the error signal is virtually zero. Such
“gradient vanishing” is the reason why the noisy-or system trained very
slowly.

Now we have seen another undesirable property of the noisy-or pooling
function: when the bag is large, negative instance-level predictions can make
the bag-level prediction positive. In the extreme case, this can cause the
gradient to vanish and the training to stall. This problem is inherent with
the noisy-or pooling function, and exists even in non-sequence learning tasks.
It is only with small bags (e.g. less than 10 instances) that this does not
become a big concern.

In Sec. 4.1.2, we have shown that the noisy-or pooling function is related
to CTC. One may wonder why the baseline system and the count labeling
system, both being CTC systems, did not suffer from this problem. It
turns out that the relationship between noisy-or pooling and CTC is rather
remote. CTC can be turned into noisy-or pooling via two steps: (1) reducing
the vocabulary size to one, and (2) allowing the single token to repeat any
number of times. Actually the most important information in CTC is the
order between different tokens; this information is totally lost in the first
step. And in the second step, exponentially many paths are added into
the set of acceptable paths; to be precise, 2n − 1 out of 2n paths become
acceptable for an utterance lasting n frames. This boosts the probability of
the bag being positive to an undesirable extent. In a word, the essence of
CTC is taken away when it is converted into noisy-or pooling.

The “max” and “noisy-or” pooling functions can also be regarded as
examples of the general p-norm:

||x||p =

(∑
i

|xi|p
)1/p

(4.14)

Recall the expressions of the two pooling functions:

Max pooling: y = max
i
yi (4.15a)

Noisy-or pooling: y = 1−
∏
i

(1− yi) (4.15b)

where the yi’s are instance-level predictions, and y is the bag-level prediction.
Let ui = − log(1− yi), and u = − log(1− y), then we have:

Max pooling: u = max
i
ui (4.16a)

Noisy-or pooling: u =
∑
i

ui (4.16b)

CHAPTER 4. SED WITH PRESENCE/ABSENCE LABELING 60

Let u be the vector containing all the ui’s, then the max and noisy-or pooling
functions correspond to the∞-norm and 1-norm of this vector. When p gets
larger, the p-norm of a vector is more and more determined by the single
largest entry of the vector; repeated entries and small entries play a weaker
and weaker role. For sequence learning tasks involving long sequences, we
want to downplay repeating entries because the frames are not independent,
and we want to downplay small entries in order to avoid negative frame-level
predictions making the sequence-level prediction positive. The max pooling
function, which corresponds to p =∞, satisfies these conditions.

From the analysis in this section, we draw the following conclusions: the
noisy-or pooling function may be suited for non-sequence learning problems
with small bags. For such problems, it is more reasonable to assume
independence between instances in a bag, negative instance-level predictions
do not easily make the bag-level prediction positive, and we need the gradient
to flow through every instance because there are no recurrent layers to
propagate the gradient across instances. For sequence learning problems
such as speech recognition and SED, max pooling is a better choice.

4.3 Proposed Work: Learning with Presence/
Absence Labeling on Large Data

I propose to train networks for SED on large data. One such corpus is
Google Audio Set [52], which contains as much as 8 months of audio data.
With this amount of data, I will be able to train end-to-end networks, i.e.
ones that directly take waveforms as the input. The networks will start with
convolutional layers that perform feature extraction, followed by recurrent
layers that deal with context dependency. The frame-level predictions will be
aggregated with the max pooling function, since we have seen that it trains
effectively and predicts wide peaks desirable for the temporal localization of
sound events.

Google Audio Set contains more than 500 types of sound events, which
may be a burden for training. A good idea is to pick a smaller set of sound
events to use as targets. Two sets of target sound events may be considered.
The first is the event set used in Task 4 of the DCASE 2017 challenge4, which
includes 17 types of vehicle sound and warning sounds that are relevant for
smart cars. Evaluating on this event set will enable me to compare my
systems with those participating in the challenge. The second is the set
of 17 types of sound events in the Noiseme corpus. Systems built for this
event set will be able to generate strong labels on the Google Audio Set,
which could be used to augment the training data for the experiments in
Chapter 3.

4http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/

task-large-scale-sound-event-detection

http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-large-scale-sound-event-detection
http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-large-scale-sound-event-detection

CHAPTER 4. SED WITH PRESENCE/ABSENCE LABELING 61

The SED system will be evaluated for their ability to detect the presence
of sound events in the 10-second excerpts, measured by the F1 score of each
event type. However, we are more interested in how well the systems can
localize sound events in time. For this purpose, I will study how well the
predictions of the networks align with the actual timespan of the sound
events. Because Audio Set does not come with the exact onset and offset
times of sound events, some manual inspection will be needed. If the
predictions do not align with actual events to a satisfactory degree, I will
try to improve them by training a deep feed-forward network alongside the
recurrent neural network (as proposed in Sec. 3.5.3), in order to emphasize
local information.

I am also interested in the ability of the networks to discover the internal
structures of sound events. Specifically, I would like to compare the behavior
of the networks on transient events (e.g. pulses), continuous events (e.g.
cheering), and intermittent events (e.g. footsteps). Ideally, these three
types of events should exhibit different patterns in the network predictions:

• Transient events should produce short predictions that last only one
or a few frames, and the lengths of the intervals between occurrences
should be random;

• Stationary events should produce long predictions that may last as
long as an entire recording;

• Intermittent events should produce many predictions whose lengths
cluster strongly around a typical value, and the lengths of the intervals
between occurrences should also concentrate around a typical value.

I will compute histograms such as the number of predicted occurrences
per recording, the duration of predicted occurrences, and the length of the
intervals between predicted occurrences, and see if it is possible to classify an
event type as transient, continuous or intermittent based on these statistics.

Chapter 5

Contributions and Timeline

5.1 Contributions of This Proposal

This proposal aims to demonstrate that it is possible to build neural
networks that learn to perform sound event detection (SED) with weak
labeling. I deal with two types of weak labeling: sequential labeling, where
the reference takes the form of sequences of tokens (e.g. event boundaries)
without precise time markers, and presence/absence labeling, where we only
know whether each type of sound event is present or absent in each recording.
I would like to show that it is possible to localize the onset and offset times of
sound event instances, even though such information is not directly present
in the labeling. I will also demonstrate the benefits of feature extraction
by transfer learning, and improve upon existing transfer learning feature
extractors.

Below is a summary of the points I have achieved or will achieve in the
next year:

• For sequential labeling:

– Show that it is possible to learn SED from sequential labeling
with connectionist temporal classification (CTC) (Sec. 3.2);

– Show that the SED performance can be improved by semi-
supervised training on a large corpus, even though the labels on
this corpus are noisy (Sec. 3.5.1);

– Show that CTC can accurately detect both long events and short
events (Sec. 3.5.2), and is better at detecting short events than
frame-wise models (Sec. 3.4);

– Show that the temporal localization power of CTC networks can
be improved by training recurrent layers and feed-forward layers
in parallel (Sec. 3.5.3).

• For transfer learning:

62

CHAPTER 5. CONTRIBUTIONS AND TIMELINE 63

– Show that features extracted by transfer learning can preserve
the temporal resolution and produce better performance than
low-level features (Sec. 3.3 and 3.5.4);

– Compare the performance of features transferred from an image
learning task and an audio learning task, and combine the two
for even better performance (Sec. 3.5.5).

• For presence/absence labeling:

– Show that it is possible to train an end-to-end SED system
from presence/absence labeling on a large corpus such as Google
Audio Set, using the multiple instance learning (MIL) framework
(Sec. 4.3);

– Make a comparison between the “max” and “noisy-or” pooling
functions (Sec. 4.1 and 4.2);

– Show that it is possible to localize sound events in time even
though the labeling does not contain temporal information
(Sec. 4.3);

– Show that the SED system can tell the difference between
transient, continuous and intermittent sound events (Sec. 4.3);

– Compare our SED performance with the participants of the
DCASE 2017 challenge (Sec. 4.3).

5.2 Potential Applications

This proposal does not only contribute to the field of sound event detection.
A direct downstream application of SED is multimedia event detection
(MED), which is the task of detecting what activity is happening in video
recordings (e.g. parade, birthday party). MED is usually performed in
two stages. The first stage generates a high-level representation of each
recording, which can be either a single vector or a sequence of frame-wise
vectors. The confidence of sound events being active at each frame is a
popular representation. The second stage performs binary or multi-class
classification on the representations of recordings to decide which activities
are active. Common classifiers include support vector machines (SVMs),
recurrent neural networks (RNNs), and a model called “recurrent SVMs”
we have devised in [9] which combines the advantages of the two. Having
improved sound event detectors will no doubt also improve the performance
of multimedia event detection.

The techniques studied in this work, including connectionist temporal
classification (CTC) and multiple instance learning (MIL), can also apply
to other sequence learning tasks with weak supervision. For example, they
may be used to detect scenes and actions in videos (e.g. fighting), if the

CHAPTER 5. CONTRIBUTIONS AND TIMELINE 64

data comes with textual descriptions that specify sequences or the presence/
absence of scenes and actions but do not specify their exact starting and
ending times [33]. These techniques may also used to diagnose pathological
speech: if we collect speech from a sufficient number of patients labeled with
the types of speech anomalies they are diagnosed with (e.g. stuttering),
we can train a system that learns what these types of anomalies sound
like and helps in diagnosing future patients. They may also be applied
to motion tracking data to recognize the moving states of people carrying
mobile devices (e.g. walking, running, driving), because the users may only
provide information about what they did but not exactly when they did it.
Another application is the detection and localization of malicious code or
vulnerabilities in programs [87], because often we only know that a program
has a bug but do not know which part of the code causes the bug.

5.3 Timeline

A tentative timeline for the proposed work is given below.

Time Work
Corresponding

Section

10/2017 – 11/2017 Train SED systems with presence/absence labeling on
Google Audio Set

4.3

11/2017 – 12/2017 Generate strong and sequential labelings on Google
Audio Set, and perform semi-supervised training with
sequential labeling

3.5.1

01/2018 Train sequential labeling systems that better exploit
long events

3.5.2

02/2018 – 03/2018 Improve the temporal localization of CTC by training
a recurrent network and a feed-forward network in
parallel

3.5.3

03/2018 – 04/2018 Train transfer learning feature extractors that pre-
serve temporal resolution

3.5.4

05/2018 Compare and combine different transfer learning fea-
tures

3.5.5

06/2018 – 07/2018 Thesis writing and defense

Table 5.1: Timeline for the proposed work.

Bibliography

[1] D. Wang and G. J. Brown, Computational auditory scene analysis:
Principles, algorithms, and applications. Wiley-IEEE Press, 2006.

[2] Y.-T. Peng, C.-Y. Lin, M.-T. Sun, and K.-C. Tsai, “Healthcare audio
event classification using hidden Markov models and hierarchical
hidden Markov models,” in International Conference on Multimedia
and Expo (ICME), IEEE, 2009, pp. 1218–1221.

[3] P. Laffitte, D. Sodoyer, C. Tatkeu, and L. Girin, “Deep neural networks
for automatic detection of screams and shouted speech in subway
trains,” in International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), IEEE, 2016, pp. 6460–6464.

[4] C. Clavel, T. Ehrette, and G. Richard, “Events detection for an audio-
based surveillance system,” in International Conference on Multimedia
and Expo (ICME), IEEE, 2005, pp. 1306–1309.

[5] S. Chaudhuri, M. Harvilla, and B. Raj, “Unsupervised learning of
acoustic unit descriptors for audio content representation and classifi-
cation,” in Proceedings of Interspeech, ISCA, 2011, pp. 2265–2268.

[6] B. Byun, I. Kim, S. M. Siniscalchi, and C.-H. Lee, “Consumer-
level multimedia event detection through unsupervised audio signal
modeling,” in Proceedings of Interspeech, ISCA, 2012, pp. 2081–2084.

[7] Y. Wang, S. Rawat, and F. Metze, “Exploring audio semantic con-
cepts for event-based video retrieval,” in International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), IEEE, 2014,
pp. 1360–1364.

[8] Y. Wang, L. Neves, and F. Metze, “Audio-based multimedia event
detection using deep recurrent neural networks,” in International
Conference on Acoustics, Speech, and Signal Processing (ICASSP),
IEEE, 2016, pp. 2742–2746.

[9] Y. Wang and F. Metze, “Recurrent support vector machines for audio-
based multimedia event detection,” in International Conference on
Multimedia Retrieval (ICMR), ACM, 2016, pp. 265–269.

65

BIBLIOGRAPHY 66

[10] X. Zhou, X. Zhuang, M. Liu, H. Tang, M. Hasegawa-Johnson, and T.
Huang, “HMM-based acoustic event detection with AdaBoost feature
selection,” in Multimodal Technologies for Perception of Humans,
Springer, 2008, pp. 345–353.

[11] A. Mesaros, T. Heittola, A. Eronen, and T. Virtanen, “Acoustic
event detection in real life recordings,” in European Signal Processing
Conference (EUSIPCO), IEEE, 2010, pp. 1267–1271.

[12] T. Heittola, A. Mesaros, A. Eronen, and T. Virtanen, “Context-
dependent sound event detection,” EURASIP Journal on Audio,
Speech, and Music Processing, vol. 2013, no. 1, 2013.

[13] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization,” in Advances in Neural Information Processing Systems
(NIPS), 2001, pp. 556–562.

[14] T. Heittola, A. Mesaros, T. Virtanen, and A. Eronen, “Sound
event detection in multisource environments using source separation,”
in Workshop on Machine Listening in Multisource Environments
(CHiME), 2011, pp. 36–40.

[15] T. Heittola, A. Mesaros, T. Virtanen, and M. Gabbouj, “Supervised
model training for overlapping sound events based on unsupervised
source separation,” in International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), IEEE, 2013, pp. 8677–8681.

[16] O. Dikmen and A. Mesaros, “Sound event detection using non-
negative dictionaries learned from annotated overlapping events,” in
Workshop on Applications of Signal Processing to Audio and Acoustics
(WASPAA), IEEE, 2013.

[17] O. Gencoglu, T. Virtanen, and H. Huttunen, “Recognition of acoustic
events using deep neural networks,” in European Signal Processing
Conference (EUSIPCO), IEEE, 2014, pp. 506–510.

[18] M. Ravanelli, B. Elizalde, K. Ni, and G. Friedland, “Audio concept
classification with hierarchical deep neural networks,” in European
Signal Processing Conference (EUSIPCO), IEEE, 2014, pp. 606–610.

[19] E. Çakır, T. Heittola, H. Huttunen, and T. Virtanen, “Polyphonic
sound event detection using multi-label deep neural networks,” in
International Joint Conference on Neural Networks (IJCNN), IEEE,
2015.

[20] M. Espi, M. Fujimoto, Y. Kubo, and T. Nakatani, “Spectrogram patch
based acoustic event detection and classification in speech overlapping
conditions,” in Joint Workshop on Hands-free Speech Communication
and Microphone Arrays (HSCMA), IEEE, 2014, pp. 117–121.

BIBLIOGRAPHY 67

[21] H. Zhang, I. McLoughlin, and Y. Song, “Robust sound event recogni-
tion using convolutional neural networks,” in International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), IEEE, 2015,
pp. 559–563.

[22] H. Phan, L. Hertel, M. Maass, and A. Mertins, “Robust audio event
recognition with 1-max pooling convolutional neural networks,” arXiv
e-prints, Apr. 2016. [Online]. Available: http://arxiv.org/abs/

1604.06338.

[23] K. J. Piczak, “Environmental sound classification with convolutional
neural networks,” in International Workshop on Machine Learning for
Signal Processing (MLSP), IEEE, 2015.

[24] J. Salamon and J. P. Bello, “Deep convolutional neural networks
and data augmentation for environmental sound classification,” IEEE
Signal Processing Letters, vol. 24, no. 3, pp. 279–283, 2017.

[25] N. Takahashi, M. Gygli, B. Pfister, and L. Van Gool, “Deep convo-
lutional neural networks and data augmentation for acoustic event
detection,” arXiv e-prints, Apr. 2016. [Online]. Available: http://
arxiv.org/abs/1604.07160.

[26] Y. Tokozume and T. Harada, “Learning environmental sounds with
end-to-end convolutional neural network,” in International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), IEEE, 2017,
pp. 2721–2725.

[27] A. Gorin, N. Makhazhanov, and N. Shmyrev, “DCASE 2016 sound
event detection system based on convolutional neural network,”
DCASE2016 Challenge, Tech. Rep., 2016.

[28] M. Espi, M. Fujimoto, K. Kinoshita, and T. Nakatani, “Exploiting
spectro-temporal locality in deep learning based acoustic event de-
tection,” EURASIP Journal on Audio, Speech, and Music Processing,
2015.

[29] G. Parascandolo, H. Huttunen, and T. Virtanen, “Recurrent neural
networks for polyphonic sound event detection in real life recordings,”
in International Conference on Acoustics, Speech, and Signal Proces-
sing (ICASSP), IEEE, 2016, pp. 6440–6444.

[30] S. Adavanne, G. Parascandolo, P. Pertilä, T. Heittola, and T. Virta-
nen, “Sound event detection in multichannel audio using spatial and
harmonic features,” in Workshop on Detection and Classification of
Acoustic Scenes and Events (DCASE), IEEE, 2016, pp. 6–10.

[31] T. Hayashi, S. Watanabe, T. Toda, T. Hori, J. Le Roux, and K.
Takeda, “Bidirectional LSTM-HMM hybrid system for polyphonic
sound event detection,” in Workshop on Detection and Classification
of Acoustic Scenes and Events (DCASE), IEEE, 2016, pp. 35–39.

http://arxiv.org/abs/1604.06338
http://arxiv.org/abs/1604.06338
http://arxiv.org/abs/1604.07160
http://arxiv.org/abs/1604.07160

BIBLIOGRAPHY 68

[32] E. Çakır, G. Parascandolo, T. Heittola, H. Huttunen, and T. Virtanen,
“Convolutional recurrent neural networks for polyphonic sound event
detection,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 25, no. 6, pp. 1291–1303, 2017.

[33] D.-A. Huang, F.-F. Li, and J. C. Niebles, “Connectionist temporal mo-
deling for weakly supervised action labeling,” in European Conference
on Computer Vision, 2016, pp. 137–153.

[34] Y. Wang and F. Metze, “A first attempt at polyphonic sound event
detection using connectionist temporal classification,” in International
Conference on Acoustics, Speech, and Signal Processing (ICASSP),
IEEE, 2017, pp. 2986–2990.

[35] Y. Wang and F. Metze, “A transfer learning based feature extractor for
polyphonic sound event detection using connectionist temporal classi-
fication,” in Proceedings of Interspeech, ISCA, 2017, pp. 3097–3101.

[36] J. Amores, “Multiple instance classification: Review, taxonomy and
comparative study,” Artificial Intelligence, vol. 201, pp. 81–105, 2013.

[37] T.-W. Su, J.-Y. Liu, and Y.-H. Yang, “Weakly-supervised audio event
detection using event-specific gaussian filters and fully convolutional
networks,” in International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), IEEE, 2017, pp. 791–795.

[38] A. Kumar and B. Raj, “Audio event detection using weakly labeled
data,” in Multimedia Conference, ACM, 2016, pp. 1038–1047.

[39] O. Maron and T. Lozano-Pérez, “A framework for multiple-instance
learning,” in Advances in Neural Information Processing Systems
(NIPS), 1998, pp. 570–576.

[40] C. Zhang, J. C. Platt, and P. A. Viola, “Multiple instance boosting
for object detection,” in Advances in Neural Information Processing
Systems (NIPS), 2006, pp. 1417–1424.

[41] B. Babenko, P. Dollár, Z. Tu, and S. Belongie, “Simultaneous learning
and alignment: Multi-instance and multi-pose learning,” in Workshop
on Faces in Real-Life Images: Detection, Alignment, and Recognition,
2008.

[42] B. Raj and A. Kumar, “Audio event and scene recognition: A unified
approach using strongly and weakly labeled data,” in International
Joint Conference on Neural Networks (IJCNN), IEEE, 2017, pp. 3475–
3482.

[43] K. J. Piczak, “ESC: Dataset for environmental sound classification,”
in Multimedia Conference, ACM, 2015, pp. 1015–1018.

BIBLIOGRAPHY 69

[44] J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and taxonomy
for urban sound research,” in Multimedia Conference, ACM, 2014,
pp. 1041–1044.

[45] R. Stiefelhagen, K. Bernardin, R. Bowers, J. Garofolo, D. Mostefa,
and P. Soundararajan, “The CLEAR 2006 evaluation,” in Interna-
tional Evaluation Workshop on Classification of Events, Activities and
Relationships, 2006, pp. 1–44.

[46] R. Stiefelhagen, K. Bernardin, R. Bowers, R. Rose, M. Michel, and J.
Garofolo, “The CLEAR 2007 evaluation,” in International Evaluation
Workshop on Classification of Events, Activities and Relationships,
2007, pp. 3–34.

[47] X. Zhuang, X. Zhou, M. A. Hasegawa-Johnson, and T. S. Huang,
“Real-world acoustic event detection,” Pattern Recognition Letters,
vol. 31, no. 12, pp. 1543–1551, 2010.

[48] A. Temko, R. Malkin, C. Zieger, D. Macho, C. Nadeu, and M. Omo-
logo, “CLEAR evaluation of acoustic event detection and classification
systems,” in International Evaluation Workshop on Classification of
Events, Activities and Relationships, 2006, pp. 311–322.

[49] A. Mesaros, T. Heittola, and T. Virtanen, “TUT database for acoustic
scene classification and sound event detection,” in European Signal
Processing Conference (EUSIPCO), IEEE, 2016, pp. 1128–1132.

[50] T. Heittola, A. Mesaros, A. Eronen, and T. Virtanen, “Audio con-
text recognition using audio event histograms,” in European Signal
Processing Conference (EUSIPCO), IEEE, 2010, pp. 1272–1276.

[51] S. Burger, Q. Jin, P. F. Schulam, and F. Metze, “Noisemes: Manual
annotation of environmental noise in audio streams,” Carnegie Mellon
University, Tech. Rep. CMU-LTI-12-07, 2012.

[52] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen, W. Lawrence,
R. C. Moore, M. Plakal, and M. Ritter, “Audio Set: An ontology and
human-labeled dataset for audio events,” in International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), IEEE, 2017,
pp. 776–780.

[53] Y. Aytar, C. Vondrick, and A. Torralba, “SoundNet: Learning sound
representations from unlabeled video,” in Advances in Neural Infor-
mation Processing Systems (NIPS), 2016, pp. 892–900.

[54] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D.
Poland, D. Borth, and L.-J. Li, “YFCC100M: The new data in
multimedia research,” Communications of the ACM, vol. 59, no. 2,
pp. 64–73, 2016.

BIBLIOGRAPHY 70

[55] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in International Conference on
Learning Representations (ICLR), ACM, 2015.

[56] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 6088, pp. 533–536,
1988.

[57] Theano Development Team, “Theano: A Python framework for fast
computation of mathematical expressions,” arXiv e-prints, May 2016.
[Online]. Available: http://arxiv.org/abs/1605.02688.

[58] M. Abadi et al., TensorFlow: Large-scale machine learning on hetero-
geneous systems, 2015. [Online]. Available: http://tensorflow.org/.

[59] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A Matlab-
like environment for machine learning,” in BigLearn, NIPS Workshop,
2011.

[60] Y. Nesterov, “A method of solving a convex programming problem
with convergence rate O(1/sqr(k)),” Soviet Mathematics Doklady,
vol. 27, no. 2, pp. 372–376, 1983.

[61] T. Tieleman and G. Hinton, RMSprop: Divide the gradient by a
running average of its recent magnitude, Coursera: Neural Networks
for Machine Learning, Lecture 6.5, 2012.

[62] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, no. 7, pp. 2121–2159, 2011.

[63] M. D. Zeiler, “ADADELTA: An adaptive learning rate method,” arXiv
e-prints, Dec. 2012. [Online]. Available: http://arxiv.org/abs/

1212.5701.

[64] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv e-prints, Dec. 2014. [Online]. Available: http://arxiv.org/
abs/1412.6980.

[65] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” Journal of Machine Learning Research, vol. 15,
no. 1, pp. 1929–1958, 2014.

[66] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
Conference on Machine Learning (ICML), ACM, 2015, pp. 448–456.

[67] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net-
works,” IEEE Transactions on Signal Processing, vol. 45, no. 11,
pp. 2673–2681, 1997.

http://arxiv.org/abs/1605.02688
http://tensorflow.org/
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

BIBLIOGRAPHY 71

[68] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber, “Gradient
flow in recurrent nets: The difficulty of learning long-term depen-
dencies,” in A Field Guide to Dynamical Recurrent Neural Networks,
IEEE Press, 2001.

[69] P. J. Werbos, “Generalization of backpropagation with application to
a recurrent gas market model,” Neural networks, vol. 1, no. 4, pp. 339–
356, 1988.

[70] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[71] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” in NIPS
Workshop on Deep Learning, 2014.

[72] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems (NIPS), 2012.

[73] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectio-
nist temporal classification: Labelling unsegmented sequence data with
recurrent neural networks,” in International Conference on Machine
Learning (ICML), ACM, 2006, pp. 369–376.

[74] L. R. Rabiner, “A tutorial on hidden Markov models and selected
applications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257–286, 1989.

[75] T. Bluche, H. Ney, J. Louradour, and C. Kermorvant, “Framewise
and CTC training of neural networks for handwriting recognition,”
in International Conference on Document Analysis and Recognition
(ICDAR), IEEE, 2015, pp. 81–85.

[76] F. Eyben, M. Wöllmer, and B. Schuller, “openSMILE – the Munich
versatile and fast open-source audio feature extractor,” in Multimedia
Conference, ACM, 2010, pp. 1459–1462.

[77] F. Eyben, F. Weninger, F. Gross, and B. Schuller, “Recent develop-
ments in openSMILE, the Munich open-source multimedia feature
extractor,” in Multimedia Conference, ACM, 2013, pp. 835–838.

[78] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with LSTM,” Neural Computation, vol. 12,
no. 10, pp. 2451–2471, 2000.

[79] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical explora-
tion of recurrent network architectures,” in International Conference
on Machine Learning (ICML), ACM, 2015, pp. 2342–2350.

BIBLIOGRAPHY 72

[80] S. Mun, S. Shon, W. Kim, D. K. Han, and H. Ko, “Deep neural network
based learning and transferring mid-level audio features for acoustic
scene classification,” in International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), IEEE, 2017, pp. 796–800.

[81] F. Chollet et al., Keras, 2015. [Online]. Available: https://github.
com/fchollet/keras.

[82] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in International Conference on
Artificial Intelligence and Statistics (AISTATS), 2010, pp. 249–256.

[83] A. Mesaros, T. Heittola, and T. Virtanen, “Metrics for polyphonic
sound event detection,” Applied Sciences, vol. 6, no. 6, pp. 162–178,
2016.

[84] A. Zeyer, E. Beck, R. Schlüter, and H. Ney, “CTC in the context of
generalized full-sum HMM training,” 2017.

[85] Y. Xu, Q. Kong, Q. Huang, W. Wang, and M. D. Plumbley, “Attention
and localization based on a deep convolutional recurrent model for
weakly supervised audio tagging,” in Proceedings of Interspeech, ISCA,
2017, pp. 3083–3087.

[86] Y. Miao, M. Gowayyed, and F. Metze, “EESEN: End-to-end speech
recognition using deep RNN models and WFST-based decoding,”
in Workshop on Automatic Speech Recognition and Understanding
(ASRU), IEEE, 2015, pp. 167–174.

[87] B. Athiwaratkun and J. W. Stokes, “Malware classification with
LSTM and GRU language models and a character-level CNN,” in
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), IEEE, 2017, pp. 2482–2486.

https://github.com/fchollet/keras
https://github.com/fchollet/keras

	Introduction
	History and State-of-the-Art of SED
	Corpora for Sound Event Detection
	Contributions of This Proposal

	Review of Deep Learning Techniques
	Feed-Forward Neural Networks
	Recurrent Neural Networks (RNN)
	Convolutional Neural Networks (CNN)
	Connectionist Temporal Classification (CTC)

	Sound Event Detection with Sequential Labeling
	Monophonic SED with Strong Labeling
	Polyphonic SED with Sequential Labeling
	Training the CTC-RNN
	Quantitative and Qualitative Evaluation

	Improving the Acoustic Features with Transfer Learning
	The Structure of SoundNet and Its Variants
	Training SoundNet and Its Variants
	SED Using Transfer Learning Features

	Error Analysis
	Proposed Work
	Semi-Supervised Training with More Data
	Better Exploiting Long Sound Events
	Improving the Temporal Localization of CTC
	Training a Transfer Learning Feature Extractor that Maintains Temporal Resolution
	Comparing and Combining Different Transfer Learning Features

	Sound Event Detection with Presence/Absence Labeling
	Pooling Functions in Multiple Instance Learning
	Motivation of the Max and Noisy-Or Pooling Functions
	Relationship Between the Noisy-Or Pooling Function and CTC
	The Gradient Flow

	Proof-of-Concept Experiments with Speech Recognition
	Experiment Setup
	Experiment Results
	Analysis: Why Noisy-Or Pooling Fails

	Proposed Work: Learning with Presence/Absence Labeling on Large Data

	Contributions and Timeline
	Contributions of This Proposal
	Potential Applications
	Timeline

	Bibliography

