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ABSTRACT
Sound event detection is the task of detecting the type, starting
time, and ending time of sound events in audio streams. Recently,
recurrent neural networks (RNNs) have become the mainstream
solution for sound event detection. Because RNNs make a prediction
at every frame, it is necessary to provide exact starting and ending
times of the sound events in the training data, making data annotation
an extremely time-consuming process. Connectionist temporal clas-
sification (CTC), as a sequence-to-sequence model, can relax this
constraint, because it suffices to provide ordered sequences of sound
events without exact starting and ending times.

This paper presents a first attempt at using CTC for sound event
detection. In the polyphonic situation, sound events may overlap
with each other, making it hard to define ordered sequences of sound
events. We propose to use the boundaries (i.e. starts and ends) of
the sound events as tokens for CTC. We show that CTC is able to
locate the boundaries of sound events on a very noisy corpus of
consumer generated content with rough hints about their positions.
The CTC approach seems to be particularly suited to detecting short
and transient sounds, which have traditionally been hardest to detect.

Index Terms— Sound event detection (SED), recurrent neural
networks (RNN), connectionist temporal classification (CTC)

1. INTRODUCTION

Sound event detection (SED) is the task of detecting the type,
starting time, and ending time of sound events in audio. Example
sound events include car engine, cat meows, and footsteps. They
can be produced by difference sources, can be either long-lasting or
transient, and can either be stationary or have a temporal structure.
In real-life recordings, sound events often overlap with each other
(“polyphonic”), which adds to the difficulty of detecting them.

SED can be useful for a number of purposes. It can be used
to understand the content of consumer videos without adequate
annotation from their uploaders, so they can be indexed and searched
[1]. It can also be used to detect anomalous incidents (such as
screaming) in public places and facilities (e.g. subway trains) [2].

To solve the task of SED, hidden Markov models (HMMs) have
been used to model the temporal structure of sound events [3, 4, 5].
Non-negative matrix factorization (NMF) has also been used to deal
with polyphony [6, 7, 8, 9]. With the popularity of deep learning
in the past few years, deep neural networks (DNNs) [10, 11, 12]
have become the mainstream solution to SED, followed by convolu-
tional neural networks (CNNs) [13, 14, 15, 16] and recurrent neural
networks (RNNs) [17, 18, 19, 20]. Equipped with long short-term
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memory (LSTM) cells [21], RNNs are able to exploit the internal
temporal structure of sound events as well as the co-occurrence
pattern between them; the strong fitting power of RNNs also makes
them more robust to overlapping sound events.

Despite the strengths of RNNs, the predictions they make are
still on a frame-by-frame basis. As a result, the training labels must
also include the exact starting and ending times of each sound event
instance. This makes data annotation a formidably tedious process.

We argue that sequence-to-sequence models, such as connec-
tionist temporal classification (CTC) [22], may offer an elegant
solution. In CTC, the supervision is provided as ordered sequences
of tokens, instead of frame-wise labels. The objective function is
based on the total probability of the token sequence, summed over
all possible alignments (i.e. starting and ending times of the sound
events). This not only reduces the workload of data annotation, but
also opens up the possibility of automatically generating sequences
of sound events from textual descriptions. Even though the exact
timings of sound events may not be provided with the training data,
CTC models should be able to figure out these timings and generate
a probability peak for each token, thereby completing the SED task.

The temporal structure of sound events is considerably more
diverse than that of speech or handwriting data; also, sound data is
more noisy than speech data, and available in smaller amounts only.
It is not clear if CTC training is practical on such data. This paper
presents a first attempt at polyphonic sound event detection using
CTC. As sound events often overlap with each other, it is hard to
define ordered sequences of sound events themselves. Instead, we
propose to predict the boundaries of sound events, i.e. their starts
and ends. In order to speed up the training process, we pre-train the
CTC model with a bidirectional LSTM-RNN that performs frame-
wise prediction, and clip the gradients while training the CTC model.
To guide the CTC model to discover the correct positions of the
tokens, we use the timing information in the annotation as rough
hints. Experiments show that the CTC model is able to locate the
boundaries of most sound events in the training data, but more data
is probably needed for good generalization to the test data.

2. THE BASICS OF CTC

Connectionist temporal classification (CTC) has achieved great suc-
cess in speech recognition [23, 24]. A main contribution of CTC
is eliminating the need of phoneme alignments (i.e. the starting and
ending times of each phoneme) during training, so the probability of
the phoneme sequences could be directly maximized.

In essence, CTC is a new way of defining the objective function
for RNNs. An RNN predicts a probability yt(k) for each token k
in the output vocabulary at time t. Let zt be the ground-truth token
at time t, then the traditional objective function for a sequence of
length T is L = −

∑T
t=1 log yt(zt), which is actually the negative
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Fig. 1. Lattice for computing the CTC objective function (taken from
[22]). Black circles represent non-blank tokens, and white circles
represent blanks. Arrows signify allowed transitions.

logarithm of the joint probability of the desired token sequence and
the alignment. Often, we are only interested in the token sequence,
and a ground-truth alignment may not be available. Therefore we
want to marginalize out the alignment.

CTC conducts the marginalization in the following way. First,
it adds a “blank” token (denoted by “-”) to the output vocabulary.
Then, it defines a many-to-one mapping function that transforms an
alignment (i.e. the sequence of output tokens at each time step,
also called a path) to a token sequence. The mapping function
first reduces adjacent repeating tokens to a single one, and then
removes the “blank” tokens. For example, the paths CC-A-TT-
and -CAAA--T both map to the token sequence CAT.

The objective function is defined as the negative logarithm
of the total probability of all paths that map to the ground-truth
token sequence. This total probability can be found using dynamic
programming on the lattice shown in Fig. 1. On the x-axis are time
steps, while on the y-axis is a “modified token sequence” – the
desired token sequence with blank tokens inserted between every
pair of tokens and at both ends. Let L be the length of the modified
token sequence, and li be its i-th token. A valid path may start
at either l1 or l2, and may end at either the lL−1 or lL. At each
time step, the path may stay at the same token, transition to the next
token, or transition to the token after the next provided it is a non-
blank token different from the current one. Let αt(i) be the total
probability of partial paths that land on the li at time t. Assuming
conditional independence between yt(k) across time steps given the
state of the hidden layers, the α’s may be computed as follows:

α1(i) =

{
y1(li) i ≤ 2
0 i > 2

(1)

αt(i) = [αt−1(i)+αt−1(i−1)+δiαt−1(i−2)]yt(li), t > 1 (2)

where δi = 1 iff li ̸= li−2, and terms that go past the start of the
modified token sequence are zero. The total probability of paths that
map to the original token sequence is given by αT (L−1)+αT (L),
whose negative logarithm is the CTC objective function.

For a derivation of the gradient of the CTC objective function
w.r.t. the network outputs, the reader is referred to [22]. However,
such derivation by hand is not necessary, given the symbolic deriva-
tion functionality of deep learning toolkits such as Theano [25].

There are several ways to decode the output of CTC model.
The simplest method is to select the token with the maximum
probability at each frame, reduce adjacent repeating tokens to a
single one, and remove the blank tokens. This method, called best
path decoding, finds the most probable path. In order to find the
most probable output sequence, whose probability can be the sum
of the probabilities of multiple paths, prefix search decoding can be
used. See [22] for more details.

0 10 20 30 40 50 60 70 80 90 100

speech
background

noise_ongoing
crowd
music

engine
music_sing

white_noise
mumble

0102030

radio
noise_nature
speech_ne
human
noise_pulse
animal
cheer
singing
noise_tone

Duration / min

Fig. 2. Duration of each sound event type in the “noiseme” corpus.
“Background” means no sound event is active. “Speech ne” stands
for “non-English speech”.

3. CTC EXPERIMENTS FOR SOUND EVENT DETECTION

3.1. Corpus, Feature Extraction, and Network Setup

We conducted sound event detection experiments on the “noiseme”
corpus [26]. The original corpus contains the audio tracks of 388
YouTube videos totaling 7.9 hours; more data has been annotated
since then, and the corpus now contains 464 recordings totaling 9.6
hours. The data is annotated with the type, starting time, and ending
time of each sound event occurrence. The sound events fall into 48
types; we manually merged some rare and semantically close types,
ending up with 17 sound event types. The duration of each sound
event type in the corpus is shown in Fig. 2. Note that the total length
of the bars in Fig. 2 (11.8 h) is longer than 9.6 hours; this is because
over a third of the duration is labeled with more than one sound
event. The average polyphony (number of sound events occurring
simultaneously) in the non-silence part of the corpus is 1.44.

The corpus was divided into training, validation, and test sets
with a duration ratio of 3:1:1. Care was taken to make sure that the
duration of each sound event type in the three sets also formed a
ratio of 3:1:1. It turned out that we didn’t use any validation during
training, so the validation set was also used as a test set.

We extracted acoustic features using the OpenSMILE toolkit
[27]. We first extracted low-level features such as MFCCs and F0

(fundamental frequency), and then computed a variety of statistics
over these raw features using sliding windows of 2 seconds moving
100 ms at a time. This procedure yielded 6,669-dimensional feature
vectors, but many of the dimensions were strongly correlated. We
conducted principal component analysis (PCA) to decorrelate the
features, and retained only the top 50 dimensions. Each dimension
was then normalized to span the range [−0.9, 0.9].

We used a bidirectional RNN as the underlying network for
CTC. The input layer had 50 units, corresponding to the dimensions
of the acoustic features. The network had one hidden layer with two
chains running in opposite directions; each chain consisted of 400
LSTM cells [21]. As for the output alphabet, an intuitive idea is to
use the repertoire of sound event types. However, the polyphony
makes it hard to define ordered sequences of sound events. To solve
this problem, we used the boundaries of sound events, i.e. their starts
and ends, as the output tokens. For example, if the content of a
recording could be described by a dog barks while a car passes
by, we used the sequence engine start, animal start,
animal end, engine end as the ground truth. As a result, the
output layer of our network had 35 output units – two for each sound
event and one for the “blank” token – in a softmax group.

The objective function (“training cost”) we chose was the per-
frame negative log-likelihood, i.e. the sum of the negative log-
probability of all training sequences divided by the total number
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Step Hidden layer size Frame accuracy
Baseline [17] 300 46.7

Biasing forget gates 300 48.5
PCA acoustic features 300 49.0

Data augmentation 400 49.7
Additional data 400 52.2

Correcting alignment 400 54.0

Table 1. Effect of each step to improve the frame-wise BLSTM-RNN,
used to initialize the CTC model.

of training frames. We trained our networks with the stochastic
gradient descent algorithm, with an initial learning rate of 0.3 and
a Nesterov momentum [28] of 0.9. After 200 epochs, we decayed
the learning rate by multiplying 0.99 every epoch, until reaching
500 epochs. The feature sequences were chopped into segments no
longer than 500 frames, cutting in the middle of silence segments
whenever possible; each minibatch consisted of 5 such segments.

To decode the CTC output, we used the simple best path
decoding. The output sequences were evaluated against the ground
truth with the token error rate (TER) metric, computed the same way
as word error rate (WER) in speech recognition. This metric only
cares about the tokens produced by the CTC model, not the temporal
position where they are produced.

3.2. Pre-training with a Bidirectional LSTM-RNN

During the initial phase of training, a CTC model often goes through
a “warmup” stage, where it only outputs blank tokens. This stage
can last for a long time. To shorten the warmup stage, we initialized
the weights between the input layer and the hidden layer, as well as
the recurrent weights of the hidden layer, with a bidirectional LSTM-
RNN trained to perform frame-wise SED. The weights between the
hidden layer and the output layer were initialized randomly.

The frame-wise BLSTM-RNN had the same structure as the
CTC model, except that it had only 18 output units (standing for
17 sound event types and a “background” type). It was an improved
version of the network introduced in [17]. In that paper, the BLSTM-
RNN achieved a frame accuracy1 of 46.7%, slightly falling short
of bidirectional RNNs without LSTM cells (47.0%). We made a
number of improvements to the BLSTM-RNN, boosting its frame
accuracy to 54.0%. The improvements include:

1. Biasing the forget gates. We initialized the bias of the forget
gates to 1.0 instead of 0.0, in order to encourage remembering
in the early stages of training. This is an effective practice first
proposed in [29], and emphasized in [30].

2. PCA on the acoustic features. The acoustic features used
in [17] were 983 dimensions selected from the 6,669-
dimensional OpenSMILE features; we replaced them with the
50-dimensional PCA features introduced in Sec. 3.1.

3. Data augmentation. We extracted acoustic features from both
channels of the audio files, and used two different versions
of OpenSMILE (1.0.1 and 2.1), so each recording had four
different copies of features. During training, we still used
a minibatch size of 5 streams, but updated the learning rate
according to the validation performance after every quarter
pass of the augmented training data. During testing, the

1The networks in [17] performed monophonic SED; a frame is regarded
as correctly classified as long as one of the ground-truth events has the
maximum probability. The frame accuracy is the percentage of correctly
classified frames in the entire corpus.
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No grad clipping, LR = 0.1
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Clip limit = 0.001, LR = 0.3, hint k = 15
Clip limit = 0.001, LR = 0.3, hint k = 5

Fig. 3. The evolution of the training cost, training TER, and test
TER during training, with different gradient clipping limits, initial
learning rates, and hint tolerances. The test TER is the average on
the two testing sets. Note the different scales of the training and test
TERs, which indicates severe overfitting. Best viewed in color.

probabilities predicted on the four copies of features were
averaged before selecting the maximum.

4. Additional data. The corpus used in [17] had 7.9 hours of
data; we added 1.7 hours of newly annotated data.

5. Correcting the alignment between the features and the anno-
tation. In [17], the feature vector extracted from the 2 second
window [t, t + 2] was associated with the annotation at time
t. An inspection of the features, however, revealed that this
vector better describes what happens at t+2, especially when
an abrupt sound event occurs. We corrected this alignment.

As we made these improvements, we also changed the hidden
layer size from 300 to 400 LSTM cells in each direction. The effect
of each improvement is shown in Table 1. The final frame accuracy,
54.0%, was the average of 4 networks trained from different random
initializations; the single best model reached a frame accuracy of
55.5%, and was used to initialize the CTC model.

3.3. Gradient Clipping

Although LSTM cells avoid the gradient vanishing problem [31],
our model still suffered from gradient explosion in two aspects: in
the initial epochs, the magnitudes of gradients were large, forcing
us to use a small learning rate, which made later epochs slow; from
time to time, one single large value in the gradients would result
in an abrupt surge in the training cost, which could take up to 100
epochs to compensate for, or even cause the training to crash. These
phenomena highlight the need for gradient clipping during training.

The three solid lines in Fig. 3 demonstrate the effect of gradient
clipping. Using a proper clipping limit avoided the surges in the
training cost and the TER, allowed for a larger learning rate, and
made the training converge faster and to a better result. With a clip-
ping limit of 10−3 and a learning rate of 0.3, we achieved a training
TER of 25%, and TERs of 84% and 81% on the two testing sets.

3.4. Hinting for the Alignment

The huge gap between the training and test TERs indicates severe
overfitting. By inspecting the output of the CTC model on the
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(b) Training recording, hinting k = 5
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(c) Testing recording 1, hinting k = 5
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Fig. 4. The CTC output on some training and test recordings. Each row of the graphs stands for an output token; each sound event is
associated with two rows – its start and end tokens. Shades of gray signify the output probability. Crosses mark the most probable token at
each frame; black dots (forming strings) mark the true span of sound events. Ideally, a piece of gray (a “peak”) with one or more crosses
should occur just above the start and below the end of each sound event instance. Unimportant sound events for these examples are omitted.

training data, we found that it was able to output the correct token
sequence most of the time, but the tokens were often far away from
the actual time when the boundaries of the sound events occurred
(see Sec. 3.5 and Fig. 4 (a)). This means the model picked up
spurious patterns from random positions in the feature sequence.

Since we did have annotations about the exact timing of the
tokens, we used them as approximate hints for the CTC model to
find the correct alignment. We applied the following constraint when
computing the alpha trellis during CTC training: all paths must go
through a non-blank token within k frames of the moment when
the token actually occurs (we call k the tolerance). That is, if the
i-th token in the modified token sequence, li, is not a blank, and
occurs at frame ti according to the annotation, then all αt(i) with
|t − ti| > k will be set to zero. This constraint still leaves to the
model the freedom to find the best alignment within (2k+1)-frame
windows, as well as allowing annotations to be at most k frames off.

A similar idea was proposed in [32]. Instead of providing a
rough range for the position of every token, the authors enforced
exact positions for a few selected tokens in the sequence. Both
methods provide hints for the CTC model to find a good alignment.
We expect that less hints may be required with more data available.

Fig. 3 also shows the effect of alignment hinting with tolerances
k = 15 and k = 5 (dotted lines). At a frame shift of 100 ms, these
correspond to windows of 3 seconds and 1 second, respectively.
With the hinting, the training cost decreased more slowly at the
beginning, but got below the unhinted case after about 120 epochs.
Both the training and test TERs decreased faster than the unhinted
case. The more precise the hints were, the faster the training
converged. With k = 5, the final training TER was 13%, and the
final testing TER was 81% on both test sets. Although these numbers
were lower than the unhinted case, overfitting remained a problem.

3.5. A Qualitative Analysis of the Network Output

The TER metric reflects how good a network is at recovering the
correct sequence of sound events. But this is not enough for sound
event detection; we also expect the peaks in the network output to
occur at the right positions, i.e. at the starts and ends of sound event
instances. In Fig. 4, we plot the output of the networks with and
without hinting on some training and test recordings.

Graph (a) shows the output of the unhinted network on a training
recording. At the middle of this recording are three cannon shots,
signified by the pulse, white, nature sequence repeated
three times. The unhinted network is able to recover this sequence
correctly, but most tokens are placed far away from the positions
where they really occur, and the tokens tend to cluster together.
Graph (b) shows the output of a hinted network (with tolerance
k = 5) on the same recording. Now we see the peaks occurring
near the actual starts and ends of the sound events. We can also see
that the network tends to generate peaks wider than 1 frame.

Graphs (c) and (d) show the output of the same hinted network
on two test recordings. We find that the CTC model is able to detect
the span of some sound event instances (e.g. the speech segments in
graph (d)), notably short and transient ones (e.g. the pulses in graph
(c)). However, it still makes many errors, such as predicting two
false speech segments between frames 260 and 340, and confusing
between English and non-English speech at frames 490 and 590
in graph (d). In addition, many sound events are missed (e.g. the
cheering, music and engine noise). More data is probably needed
for the network to learn to detect these sound events.

4. CONCLUSION AND FUTURE WORK

We conducted sound event detection using a CTC network, in order
to relax the need for exact annotations of the starting and ending
times of sound events. To deal with polyphony, we used the
boundaries of sound events as output tokens. We demonstrated the
importance of gradient clipping, and the helpfulness of providing
rough hints about the positions of the event boundaries.

Although the CTC model achieved a low token error rate on the
training data, and was thus able to learn the temporal characteristics
of sound events successfully, its generalization was still poor. We
believe this is mainly due to insufficient amounts of training data, but
the advantages of CTC – the ability to detect short sounds and work
with fuzzy labels – can still be leveraged for sound event detection.
In the future, we will increase the amount of training data both by
incorporating other corpora (e.g. the TUT Sound Events 2016 corpus
[33]) and by data augmentation. We will also try out regularization
techniques such as Dropout [34].
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