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ABSTRACT

Packet loss may affect a wide range of applications that use voice
over IP (VoIP), e.g. video conferencing. In this paper, we investigate
a time-domain convolutional recurrent network (CRN) for online
packet loss concealment. The CRN comprises a convolutional
encoder-decoder structure and long short-term memory (LSTM)
layers, which have been shown to be suitable for real-time speech
enhancement applications. Moreover, we propose lookahead and
masked training to further improve the performance of the CRN
framework. Experimental results show that the proposed system
outperforms a baseline system using only LSTM layers in terms
of two objective metrics – perceptual evaluation of speech quality
(PESQ) and short-term objective intelligibility (STOI); it also re-
duces the word error rate (WER) more than the baseline when used
as a frontend for speech recognition. The advantage of the proposed
system is also verified in a subjective evaluation by the mean opinion
score (MOS).

Index Terms— Voice over IP, packet Loss concealment, neural
networks, long short-term memory

1. INTRODUCTION

With the widespread usage of the Internet, voice over Internet Pro-
tocol (VoIP) has become increasingly popular. However, IP packets
may be lost due to delay and jitter during audio data transmission,
which degrades the speech quality [1]. To address the unreliable
delivery of voice packets over the Internet, many packet loss con-
cealment (PLC) methods have been developed and refined during
the last several decades. Apart from trivial methods such as zero fill-
ing and repeating the segment before a lost packet, more intelligent
PLC algorithms make use of the redundant information embedded in
neighboring packets. Examples include interpolation-based meth-
ods [2] and model-based algorithms, e.g. hidden Markov models
(HMM) [3] and linear predictive coding (LPC) [4].

Recently, deep learning techniques have been introduced to
PLC, because they are capable of learning complex hierarchical
functions. In [5], a deep neural network (DNN) was used as a non-
linear regression function for PLC, in which the model was trained
using the log-power spectral features. A recurrent neural network
(RNN) based speech signal predictor was proposed in [6], which
directly operates on time-domain speech samples. More recent con-
tributions propose to use generative RNNs that predict a frame using
the preceding frames [7].

PLC algorithms may be classified into online and offline meth-
ods. In online methods, the system must make predictions for lost
frames in real time, and generally can only use its left context. The
works above [5, 6, 7] all fall into this category. Online PLC systems
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enjoy the advantage of a short latency, which is usually no more than
a frame (typically 10 ∼ 20 ms). By contrast, offline methods process
larger chunks of audio containing lost packets, and can make use of
the context in both directions. These methods trade latency for bet-
ter speech quality. In [8], a convolutional U-Net based approach was
introduced that uses deep feature losses during the training stage to
recover the missing signal. Several auto-encoder based approaches
were investigated recently [9, 10]. In [11, 12, 13], generative adver-
sarial network (GAN) based frameworks were proposed for PLC.

PLC algorithms may also be divided into time-domain and
spectral-domain methods. The performance of spectral-domain ap-
proaches [14, 15] may be limited, because they need to recover
the phase information in order to reconstruct the waveform. Time-
domain based end to end methods [6, 7] overcome this limitation,
and time-domain methods in the online setting are most suitable for
real-time applications.

In this paper, we propose an online time-domain convolutional
recurrent network (CRN) framework for PLC. The framework con-
sists of a convolutional encoder-decoder architecture and multiple
long short-term memory (LSTM) layers. CRNs [16] were originally
proposed for speech enhancement operating on time-frequency (TF)
representations; we adapt it to the time domain in this work. We also
propose two techniques (lookahead and masked training) to further
improve the performance. The lookahead technique allows the sys-
tem to peek at one frame in the future; it earns a big improvement
in the speech quality at the cost of a slightly increased latency. We
note that lookahead for PLC was also proposed in [17]; our contri-
bution here is showing that lookahead can be easily integrated into a
deep learning framework. The masked training technique deals with
the scenario of high packet loss rates. During inference, the context
leading up to the frame to be predicted can contain many recon-
structed frames instead of original frames, creating a mismatch be-
tween training and inference. To mitigate this mismatch, we replace
original frames with reconstructed frames with a certain probability
during training as well. The effectiveness of the proposed frame-
work and techniques is verified with both objective and subjective
evaluations.

2. PACKET LOSS SIMULATOR

To create training and test data for PLC, it is essential to simulate
realistic scenarios of packet loss. Algorithms for packet loss sim-
ulation include random sampling, two-state Markov chain models,
and Gilbert-Elliot models [18]. We adopt a two-state Markov chain
to model the packet loss behaviour. As shown in Fig. 1, the Markov
chain consists of a “non-loss” state (N ) and a “loss” state (L); transi-
tions between the two states are dictated by two probabilities pN and
pL. By configuring these two probabilities, we can generate speech
signals with different expected packet loss rates, which can be calcu-

lated as
1− pN

2− pN − pL
(see Fig. 1). Note that the values in the table
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Fig. 1. Different configurations of the two-state Markov chain, and
the resulting expected packed loss rates. N : non-loss state; L: loss
state.

are expected packet loss rates; actual packet loss rates for individual
sentences may vary.

3. MODELS

3.1. Generative Model for PLC

Training. Similar to [7], we regard PLC as a generative task with an
auto-regressive training scheme. Given an audio signal x1, . . . ,xT

with T frames, we use the first T − 1 frames (X = x1, . . . ,xT−1)
as the input sequence to the model, and the last T − 1 frames (Y =
x2, . . . ,xT ) as the target sequence. As shown in Fig. 2(a), at frame
t, the model takes the hidden state of the previous frame st−1 and
the waveform of the current frame xt, makes a prediction x′t+1 for
the waveform of the next frame, and generates a new hidden state st.
The model is trained to minimize the L1 loss between the predicted
sequence X ′ = x′2, . . . ,x

′
T and the target sequence Y .
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Fig. 2. Auto-regressive training flow and inference flow for packet
loss concealment.

Inference. The flowchart of the inference stage is shown in
Fig. 2(b). In our PLC system, whether each packet is lost or not is
known as an input. If a frame xt is not lost, we copy it directly to the
output. Otherwise, we output the predicted signal x′t at the previous
frame. In either case, the outputted frame (xt or x′t) is fed into the
model to update the hidden state for future predictions.

3.2. Model Structures

Fig. 3 shows the structures of the models used in this study. We use
an LSTM network without convolutional layers as a baseline system
(Fig. 3(a)). The input waveform is fed directly into two LSTM lay-
ers, whose output is transformed with a fully connected layer with
the tanh activation into the predicted waveform.

The first CRN architecture we explore employs convolutional
encoder layers. As shown in Fig. 3(b), an input layer and a stack
of convolutional blocks are inserted between the waveform input
and the LSTM layers. The input layer uses filters of size 1 to in-
crease the number of channels to 16; the convolutional blocks extract
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Fig. 3. The model architectures used for packet loss concealment.

high-level features from the input features. Each convolutional block
consists of a 1-D convolutional layer, followed by layer normaliza-
tion [19] and the PReLU activation [20]. We refer to this architecture
as CRN FC.

We also investigate an encoder-decoder architecture for the
CRN. As shown in Fig. 3(c), this architecture has the same input,
encoder, and LSTM layers as CRN FC, but contains additional
decoder layers and an output layer. The decoder consists of decon-
volutional blocks, and serves to convert the low resolution features to
the target size. Each deconvolutional block consists of a 1-D trans-
posed convolutional layer, followed by layer normalization [19] and
the PReLU activation [20]. The CRN also includes skip connec-
tions from each encoder layer to its corresponding decoder layer,
in order to avoid losing low-level details and to facilitate optimiza-
tion. Finally, the output layer uses filters of size 1 to generate
predicted frames in a single channel. We refer to this architecture as
CRN Decoder.

3.3. Lookahead

In our preliminary experiments, we found that the right end of lost
frames were often not predicted ideally: the phase did not connect
smoothly with the ensuing frame, and the amplitude was often atten-
uated. This indicates that some right context is essential for recon-
structing lost frames. To avoid incurring a large latency, we allow
the model to look ahead at one single future frame xt+2 when pre-
dicting x′t+1. This increases the latency by two frames. As shown in
Fig. 4, the future frame xt+2 is concatenated with the current frame
xt as the input.

During inference, the future frame may not be always available
because it may be a lost frame itself. In this case, we need to replace
it with an all-zero frame. In order to avoid mismatch between train-
ing and inference, we replace the future frame by all zeros with a
certain probability p during training as well. We choose this proba-
bility to be 40% in this work, because that is the highest packet loss
rate we allow in our simulated data.

3.4. Masked Training

During inference, the left context leading up to the frame to be
predicted may contain many predicted frames instead of original
frames. This is especially pronounced when packet loss occurs in
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Fig. 4. The lookahead operation.

bursts: the current frame xt may be a predicted frame itself. This
again creates a mismatch between training and inference. To address
this mismatch, we also replace original frames xt with the predicted
frame x′t with a certain probability during training. We choose this
probability empirically to be 30%.

4. EXPERIMENTS

4.1. Datasets

Packet Loss Concealment. The training data for PLC was taken
from an in-house corpus, which is a de-identified dataset collected
using mobile devices through crowd-sourcing from a data supplier
for ASR. No personally identifiable information is contained in this
dataset. The participants were instructed to pronounce utterances as
they would talk to an in-home voice assistant on the topics of call-
ing friends, setting timers, playing music, etc. We selected 500K
and 1.5K sentences from the in-house data as training and test sets,
respectively. We degraded the test set using our packet loss sim-
ulator, picking pN and pL randomly from Fig. 1, but only retained
degraded sentences having an actual packet loss rate below 40%. We
measured the objective metrics (PESQ and STOI) on this test set.

Automatic Speech Recognition. To verify the ASR performance of
the proposed method, we conducted experiments on the LibriSpeech
corpus [21]. LibriSpeech is an open-source corpus containing 960
hours of speech derived from audiobooks in the LibriVox project.
We trained two ASR acoustic models: one using the original 960
hours of training data; the other one in a multi-style fashion using the
original 960 hours of data plus 360 hours of distorted data generated
with our packet loss simulator. We also selected 1,000 sentences
from the “test-clean” set as test data. We processed them with the
packet loss simulator in the same way as we processed the in-house
data, and measured word error rate (WER) on this test set.

4.2. PLC Model Setup

All models in this work operate directly on raw audio sampled at
16 kHz. A 20 ms sliding window is used to extract frames of speech
waveform of 320 samples each. When lookahead is applied, the
current frame and the future frame are concatenated to form a 640-
sample input to the model.

LSTM. The LSTM baseline model consists of two LSTM layers
followed by a fully connected output layer. Each LSTM layer has
1024 memory cells. The output layer reduces the dimensionality
from 1024 to 320, which is the length of an audio frame. To constrain
the output values within [-1, 1], the tanh activation is applied.

CRN FC. This CRN consists of 1 input layer and 7 Conv1d blocks.
The number of output channels is [16, 16, 32, 64, 128, 128, 256,

256] for each layer, and their filter sizes are [1, 3, 3, 3, 3, 3, 3, 3].
The LSTM and output layers are identical to the LSTM baseline.

CRN Decoder. The input, encoder and LSTM layers are identical
to CRN FC. The LSTM layers are followed by 6 Deconv1d blocks
and one output layer. Their number of output channels is [256, 128,
128, 64, 32, 16, 1] respectively, and their filter sizes are [3, 3, 3, 3,
3, 4, 1].

All the models were trained using the Adam optimizer [22] with
an initial learning rate of 0.0002, and a minibatch size of 160 sen-
tences. All sentences were zero-padded to have the same length as
the longest sentence within a minibatch.

4.3. ASR Setup

We adopt a chenone-based hybrid acoustic model [14]. It comprises
six latency-controlled bidirectional long short-term memory (LC-
BLSTM) layers, each having 1,000 memory cells for each direction.
The model was trained on 80-dimensional log-Mel filterbank fea-
tures extracted from 25 ms windows with a 10 ms frame shift. It was
first trained with the cross-entropy loss for 25 epochs, then further
trained with the LF-MMI [23] criterion for 8 epochs. An official un-
pruned 4-gram language model of Librispeech is used for decoding.

We trained two versions of acoustic models with different data.
One was trained using all the 960 hours of LibriSpeech data, and we
refer to it as LF-MMI-Default. The other one was trained in a multi-
style fashion using the 960 hours of LibriSpeech data plus 360 hours
of distorted data, and we refer to this model as LF-MMI-MTR.

4.4. Evaluation Metrics

Speech enhancement is commonly evaluated with the perceptual
evaluation of speech quality (PESQ) score [24] and the short-time
objective intelligibility (STOI) score [25]. Both scores can be auto-
matically computed by comparing the enhanced speech signal with
a clean reference signal, and act as objective proxies of the speech
quality and intelligibility perceived by humans. The PESQ score
ranges from -0.5 to 4.5, and the STOI score ranges from 0 to 1. We
use the wide-band version of the PESQ score, because our signals
are sampled at 16 kHz.

Enhanced signals generated by our systems may be consumed
either by human listeners or by ASR systems. To evaluate the per-
formance more directly, we conducted a subjective listening test and
measured the speech quality using mean opinion scores (MOS). We
also measured the intelligibility with word error rates (WER) from
our ASR systems.

4.5. Results

Objective evaluation. Table 1 shows the wide-band PESQ score,
STOI score, and WERs of the various systems. For PESQ and STOI,
we report the overall score, and a breakdown by the packet loss rate.

From the overall PESQ and STOI scores, we can see that all
the PLC models improve the speech quality and intelligibility of de-
graded speech. CRN-based methods outperform the LSTM base-
line: CRN FC slightly improves the PESQ score from 2.03 to 2.08,
and the STOI score from 0.8788 to 0.8831. Furthermore, adding
lookahead can improve the performance significantly for both CRN
structures. For example, lookahead increases the PESQ and STOI
scores of CRN FC remarkably by 0.35% and 1.62% (absolute), re-
spectively. This suggests that the additional right context helps to
reconstruct the speech signal.
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#Params WB-PESQ STOI WER(%)
Packet loss rate - 0-10% 10%-20% 20%-40% Overall 0-10% 10%-20% 20%-40% Overall LF-MMI-Default LF-MMI-MTR
Degraded - 2.09 1.57 1.19 1.53 0.9233 0.8620 0.7252 0.8203 19.99 7.43
LSTM 14.24M 2.79 2.13 1.53 2.03 0.9526 0.9057 0.8134 0.8788 10.32 7.51
CRN FC 17.30M 2.86 2.19 1.57 2.08 0.9544 0.9092 0.8199 0.8831 9.18 6.91

+look ahead 17.50M 3.23 2.49 1.93 2.43 0.9614 0.9182 0.8476 0.8993 8.02 6.29
+masked training 17.50M 3.16 2.41 1.96 2.41 0.9599 0.9124 0.8468 0.8992 8.13 6.36

CRN Decoder 17.34M 2.79 2.15 1.54 2.05 0.9540 0.9012 0.8212 0.8840 8.49 6.54
+look ahead 17.93M 3.14 2.44 1.88 2.37 0.9624 0.9220 0.8535 0.9033 7.26 6.19
+masked training 17.93M 3.12 2.41 1.90 2.39 0.9618 0.9173 0.8547 0.9044 7.13 6.26

Table 1. The PESQ scores, STOI scores and WERs of the various networks. The best value in each column is boldfaced.

From the breakdown by packet loss rate, we see that masked
training is only helpful for higher loss rates (20%-40%). This is
in agreement with the motivation of reducing the training-inference
mismatch when the packet loss rate is high. Comparing the CRN
structures with and without a decoder, we can see that decoder layers
improves intelligibility (STOI), but not speech quality (PESQ).

The observations above are corroborated by the ASR results.
CRN FC outperforms the LSTM baseline, and the decoder brings
extra WER reduction thanks to the improved intelligibility. In
the LF-MMI-Default setting, the lowest WER is achieved by the
CRN Decoder system equipped with both lookahead and masked
training. LF-MMI-MTR gives us an even lower WER compared
with LF-MMI-Default. This indicates that, even with packet loss
concealment in place, multi-style training and data augmentation by
simulating packet loss can still boost the ASR performance.

Subjective evaluation. We designed the MOS evaluation as follows
to evaluate the quality of the enhanced speech. We selected a total
of 20 sentences (15 from the in-house test set and 5 from the Lib-
riSpeech test-clean set). For each sentence, we prepared five con-
ditions: original non-degraded speech, degraded speech generated
by the packet loss simulator, and enhanced speech produced by the
LSTM baseline and the two CRN systems. We repeated each sen-
tence 3 times, resulting in a total of 20×5×3 = 300 test sentences.
We recruited 15 coworkers as listeners, and assigned 20 sentences
to each listener. The listeners were asked to rate each sentence on a
scale of 1 to 5.

Fig. 5 shows the mean and the standard deviation of the MOS
scores for each condition. We can clearly observe that CRN-based
systems generate higher-quality speech than the LSTM baseline, but
the difference between the two CRN structures is indiscernible. An
ANOVA analysis confirms that all differences in Fig. 5 are signifi-
cant, except that between the two CRN structures.

1.98

2.27

2.82 2.88

4.80

Fig. 5. MOS scores of the speech quality.

Visualization. Figure 6 shows an example of the waveforms of
original speech, degraded speech, and the signal recovered by the
various systems. In the degraded speech, two consecutive frames
(total 40 ms) are dropped. The reconstruction results illustrate the
advantage of lookahead. Without lookahead, the amplitude of the
recovered speech tends to taper off toward the end of the dropped
segment, but lookahead corrects this behavior thanks to the right
context.
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Fig. 6. Waveforms of degraded speech and enhanced speech by var-
ious approaches.

5. CONCLUSION

In this paper, we have proposed to use CRN-based architectures for
online packet loss concealment in the time domain. Compared with
a baseline system using only LSTM layers, a CRN system with en-
coder layers achieves better performance in both objective and sub-
jective evaluations. Adding decoder layers to the CRN can further
improve the intelligibility of the reconstructed speech. By provid-
ing some right context for prediction, lookahead offers a significant
improvement in all evaluation metrics. When the packet loss rate
is high, masked training can reduce the mismatch between training
and inference. Finally, we have found that multi-style training and
data augmentation are still helpful for speech recognition even with
packet loss concealment in place.
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