
MULTI-TASK LEARNING FOR FRONT-END TEXT PROCESSING IN TTS

Wonjune Kang1* , Yun Wang2, Shun Zhang2, Arthur Hinsvark2, Qing He2

1Massachusetts Institute of Technology 2AI at Meta

ABSTRACT
We propose a multi-task learning (MTL) model for jointly performing
three tasks that are commonly solved in a text-to-speech (TTS) front-
end: text normalization (TN), part-of-speech (POS) tagging, and
homograph disambiguation (HD). Our framework utilizes a tree-like
structure with a trunk that learns shared representations, followed by
separate task-specific heads. We further incorporate a pre-trained lan-
guage model to utilize its built-in lexical and contextual knowledge,
and study how to best use its embeddings so as to most effectively
benefit our multi-task model. Through task-wise ablations, we show
that our full model trained on all three tasks achieves the strongest
overall performance compared to models trained on individual or
sub-combinations of tasks, confirming the advantages of our MTL
framework. Finally, we introduce a new HD dataset containing a bal-
anced number of sentences in diverse contexts for a variety of homo-
graphs and their pronunciations. We demonstrate that incorporating
this dataset into training significantly improves HD performance over
only using a commonly used, but imbalanced, pre-existing dataset.

Index Terms— text-to-speech front-end, text normalization, part-
of-speech tagging, homograph disambiguation, multi-task learning

1. INTRODUCTION
The front-end of a text-to-speech (TTS) pipeline plays an essential
role in the performance of the overall system, taking on a variety of
linguistic tasks that convert input text into phonetic representations.
While the exact components of a TTS front-end can vary, some tasks
that are commonly addressed include text normalization (TN) [1],
part-of-speech (POS) tagging [2], and homograph disambiguation
(HD) [3], leading up to grapheme-to-phoneme conversion (G2P) [4].
In recent years, data-driven approaches utilizing deep neural networks
have seen great success in these tasks, notably for TN [5, 6, 7],
HD [8, 9], and as end-to-end front-ends [10].

In this work, we consider how to better solve TN, POS tagging,
and HD in the context of a TTS front-end for American English.
Although all three tasks share a common input (the text to be syn-
thesized into speech), in most pipelines, the modules that solve each
task are usually trained and used separately. Intuitively, however, one
might expect them to be able to take advantage of shared representa-
tions containing common high-level information. For example, POS
information could help with recognizing non-standard words such as
numbers or abbreviations in TN, or with determining the pronuncia-
tion of a word given a sentence’s context in HD. Additionally, certain
cases in TN can be treated similarly to a homograph or word sense
disambiguation problem (e.g., “St. Mary’s St.” → “Saint Mary’s
Street”). This makes the three tasks opportune targets for multi-task
learning (MTL), which can allow a model to capture more generalized
and complementary knowledge that benefits its performance [11].

We propose a multi-task learning model for TN, POS tagging,
and HD that aims to capitalize on the above-mentioned common-

*Work done as an intern at Meta.

alities between the three tasks. Our model has a tree-like structure
with a shared trunk for general feature extraction and task-specific
heads. The trunk consists of two information streams that are com-
bined using a cross-attention mechanism: the first operates on a token
sequence for TN (described in Section 3.1), and the second utilizes an
embedding sequence from a pre-trained language model (LM) [12].
We investigate which layers of the LM to extract embeddings from
and how to best incorporate them into the model so as to optimally
benefit each task. We also perform task-wise ablations to study how
jointly learning different combinations of the three tasks affects model
performance, and in doing so, we justify our intuition for the MTL
framework by validating the presence of inter-task positive transfer.
Finally, we address a key gap in the HD literature: the lack of a strong
dataset with balanced samples for different homograph pronuncia-
tions. We introduce a new dataset that expands upon a commonly
used, but imbalanced pre-existing corpus [8]; our dataset contains an
equal number of sentences using each homograph’s pronunciation
in diverse contexts, generated using Llama 2 [13]. We demonstrate
that incorporating this dataset into training significantly improves HD
performance over using only the imbalanced pre-existing dataset.1

In summary, the contributions of this paper are as follows: 1)
We introduce a multi-task learning model for TN, POS tagging, and
HD, and propose various architectural design choices to optimize its
performance. 2) We justify the intuition behind our MTL approach via
task-wise ablation studies that demonstrate the presence of positive
transfer between the three tasks. 3) We introduce a new dataset for
HD that extends upon the dataset from [8] with balanced samples for
all homograph pronunciations, and show that incorporating it into
training significantly improves performance on the task.

2. BACKGROUND AND RELATED WORK
2.1. TTS front-end tasks
Text normalization. In the context of TTS, text normalization (TN)
is the task of converting written text into its spoken form, transform-
ing non-standard words into their appropriate verbalizations given the
sentence’s context. Such non-standard words can be further catego-
rized into semiotic classes [14] such as numbers, dates, or currency.

Traditional methods for TN used hand-crafted rules or handwrit-
ten grammars to verbalize input tokens [15, 16]. More recent deep
learning approaches have seen success in treating TN as a sequence-to-
sequence problem [5, 17, 18]; however, these methods are susceptible
to “unrecoverable” errors that can fundamentally change the meaning
of an utterance (e.g. “7/8 inches” → “five eighth inches”) [6]. Other
approaches have cast TN as a semiotic classification task [19]. Here,
the procedure is to predict a class for each input token and perform
normalization according to predetermined mechanisms associated
with the class. Because there is a limited set of known transforma-
tions that can be applied to each class, these methods provide more
deterministic safeguards against unrecoverable errors.

1The dataset is publicly available at: https://github.com/
facebookresearch/llama-hd-dataset

10796979-8-3503-4485-1/24/$31.00 ©2024 IEEE ICASSP 2024

IC
A

SS
P

20
24

 -
20

24
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 A
co

us
tic

s,
Sp

ee
ch

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g
(I

C
A

SS
P)

 |
97

9-
8-

35
03

-4
48

5-
1/

24
/$

31
.0

0
©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
A

SS
P4

84
85

.2
02

4.
10

44
62

41

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on October 27,2025 at 06:52:49 UTC from IEEE Xplore. Restrictions apply.

Part-of-speech tagging. Part-of-speech (POS) tagging has direct
links to other tasks that are often part of a TTS front-end, such as
homograph disambiguation [3]. While traditional approaches used
hand-crafted rules or statistical methods [20], more recent ones have
used neural models to achieve state-of-the-art performance, often
using contextual word representations [21, 22]. Notably, POS tagging
has been shown to be a near-universal helper task for text-based MTL
models [23], motivating its inclusion in our framework.
Homograph disambiguation. Homograph disambiguation (HD) is
often done before the G2P module in a TTS front-end to determine
which pronunciation of a homograph to use. It was traditionally done
using rule-based or statistical decision procedures that utilized syntac-
tic patterns [3]. More recently, [8] proposed a supervised multinomial
log-linear model that uses word context, POS tag, and capitaliza-
tion features, and [9] utilized contextual word embeddings from
pre-trained Transformer language models as inputs to homograph-
wise pronunciation classifiers. We take inspiration from their findings
in the design of our multi-task model.

2.2. Multi-task learning for text data
Many works have explored the applicability of multi-task learning
(MTL) to text-based tasks [24, 25]. The idea behind MTL is that
jointly learning to solve multiple related tasks can allow a model to
learn common knowledge that can benefit all of them, leading to more
robustness and generalizability. The concepts of positive and negative
transfer play an important role here; that is, whether jointly learning
pairs of tasks results in better or worse performance compared to
separately learning each task, respectively [26].

Several previous works incorporated TN, POS tagging, and/or
HD-like tasks in MTL frameworks. [27] studied joint word segmen-
tation, POS tagging, and lexical normalization in Japanese. [28]
proposed a joint model for POS tagging and TN on social media data,
but their TN task involved converting non-standard language used
online to standard form rather than written to spoken form. Recently,
[29] introduced a unified English TTS front-end that performs TN,
prosody prediction, and G2P, with POS tagging and HD as interme-
diate steps. However, it did not provide an in-depth analysis of how
jointly learning the different tasks affects performance on each one.
To the best of our knowledge, no previous works have studied the
concrete impact of multi-task learning on various TTS front-end tasks.

3. PROPOSED METHOD
3.1. Preliminaries
Our TN system is based on semiotic classification, similar to the one
in [19]. It treats TN as a sequence tagging problem, where input
text is split into tokens and the objective is to predict an appropriate
rule for normalizing each token. The TN tokenizer is deterministic;
it first splits text on spaces and then further splits it wherever there
is a change in the unicode class (e.g., ‘1/2023’ is split into [‘1’, ‘/’,
‘2023’]). We use an internally developed token-to-normalization
ruleset for American English consisting of 106 rules for 14 semiotic
classes. Each rule verbalizes one or more consecutive tokens at a time,
and the objective is to solve a 106-way classification problem for
each token. Rules that cannot parse a given token and its successors
are masked from the output of the model’s final classification layer.
Based on the predictions, a beam search is applied to find the optimal
sequence of TN rules to produce the final normalization.

For POS tagging, we use a set of 15 classes: adjective, adverb,
article, auxiliary, conjunction, interjection, name, noun, participle,
particle, preposition, pronoun, punctuation, spelling, and verb. There-
fore, the task is to solve a 15-way classification problem for each
word in a given input sentence.

Fig. 1: Block diagram of the proposed multi-task model for TN,
POS tagging, and HD. The shared trunk processes the input text in
two streams, which are combined using cross-attention. The shared
representations are then passed to separate heads that solve each task.

For HD, we consider the 162 American English homographs
from the Wikipedia dataset [8]. 160 of these have two pronunciations,
and two have three pronunciations. We treat HD as a pronunciation
classification task; given an input sentence containing a homograph,
we predict which pronunciation to use given the surrounding context.

3.2. Model
Our multi-task model has a tree-like structure with a trunk for shared
feature extraction and separate task-specific heads; Figure 1 shows a
block diagram of the overall architecture.
Trunk. The trunk takes a piece of text as input and processes it in
two information streams. The first stream operates on a TN token
sequence of length n (from the tokenizer described in Section 3.1),
which we denote as tt = [t

(1)
t , t

(2)
t , ..., t

(n)
t]. First, a stack of stateful

convolutional layers is applied to each token at the character-level to
obtain character embeddings, which are mean pooled to obtain token-
level embeddings. Then, the token embedding sequence is passed
through a bidirectional long short-term memory (Bi-LSTM) layer and
a Transformer layer [30] in order to induce context-sensitivity. We
denote the resulting embedding sequence et = [e

(1)
t , e

(2)
t , ..., e

(n)
t].

The second stream feeds the input text through a pre-trained
Transformer-based LM, ALBERT [12]. We chose to use ALBERT
because of its relatively compact size and good performance on var-
ious NLP benchmarks; however, it could feasibly be replaced with
any other similar LM. By incorporating this module, our aim is to
utilize the additional linguistic knowledge encoded within the LM’s
embeddings in order to improve performance on our three tasks. AL-
BERT operates on a token sequence ta that in general has a different
length from the TN token sequence; we denote it as having length m:
ta = [t

(1)
a , t

(2)
a , ..., t

(m)
a]. The LM then produces a corresponding

embedding sequence ea = [e
(1)
a , e

(2)
a , ..., e

(m)
a].

The last part of the trunk combines the two embedding sequences

10797

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on October 27,2025 at 06:52:49 UTC from IEEE Xplore. Restrictions apply.

using a cross-attention mechanism. This module largely follows
the structure of a Transformer layer, but instead of self-attention, it
uses et as the query and ea as the key and value. Applying cross-
attention in this way allows us to combine the two sequences while
maintaining the length of et in the output sequence, which we denote
as e = [e(1), e(2), ..., e(n)]. This is a desirable design choice because
of our TN framework; since rule classification is done at the TN
token-level, it is convenient to have an embedding sequence that has
a direct one-to-one mapping to the original TN tokens so that we can
simply predict a rule for each embedding.
Task-specific heads. The output embedding sequence from the trunk,
e, is fed into task-specific heads for TN, POS tagging, and HD. Each
head contains a feedforward module made up of a linear layer and
a ReLU activation. For TN, each embedding in e is fed through the
feedforward module, followed by a final linear layer for token-level
rule classification. For POS tagging, the embeddings in e are first
aggregated into the word-level by averaging any token embeddings
that make up a single word. Then, each word-level embedding is
fed to the feedforward module and a final linear layer for POS tag
prediction. In addition to the feedforward module, the HD head
contains 162 dedicated pronunciation classification heads for each
homograph. The embedding in e at the index corresponding to the
homograph is fed through the feedforward module and the appropriate
homograph classification head to predict the pronunciation.
Incorporating ALBERT effectively. Prior work analyzing interme-
diate representations of Transformer LMs found that layers at various
depths learn different structural information about language [31]. We
performed experiments to determine the optimal layers of ALBERT
to use embeddings from. We found that embeddings from earlier lay-
ers (containing syntactical information) were more beneficial for TN
and POS tagging, while those from later layers (containing contextual
information) were more beneficial for HD; depending on the task, we
observed up to a 2% difference in downstream accuracy between the
best and worst layers. Based on these results, we incorporate AL-
BERT embeddings in two different ways. First, we use embeddings
from the first layer as inputs to the trunk’s cross-attention module in
order to influence both TN and POS tagging. Second, we incorporate
embeddings from the final (12th) layer directly into the HD head by
taking the embeddings at the indices that correspond to the homo-
graph, aggregating them via averaging, and using a skip connection
to add them before the appropriate homograph’s classification head.

3.3. Training
We use cross-entropy loss as the objective function for all three
tasks. To train our model, we cycle through the tasks and perform
optimization for only one task within each minibatch. This is because
we use separate datasets for each task, and a given sample can only
be used for training on the task that it has labels for. Therefore, the
model is trained for an equal number of iterations on each task; the
trunk is optimized with respect to all three tasks over the course
of training, while each task-specific head is optimized only on its
corresponding task. We did not perform any kind of task-wise loss
weighting or balancing. While we considered other strategies that
stochastically sample tasks or weight losses based on task importance
or dataset size (e.g., [32]), we found that our method was sufficient
for stable convergence and good performance on all three tasks.

4. LLAMA 2-GENERATED HOMOGRAPH DATASET
Many recent approaches for HD have utilized the dataset introduced
in [8], which consists of 162 English homographs and 100 sentences
per homograph taken from Wikipedia. However, many of these
homographs have a heavily imbalanced number of sentences for

each pronunciation, which was also noted in previous work [9]. For
example, of the 90 instances of “abstract” in the training set, 89 are
pronounced /"æb­stôækt/ while only one is pronounced /æb"stôækt/; in
the evaluation set, all 10 instances are pronounced /"æb­stôækt/. We
argue that such data does not provide enough information for a model
to learn to truly disambiguate between pronunciations, nor can it
accurately measure a model’s capabilities.

To solve this issue, we introduce a new HD dataset encompassing
the same 162 English homographs as above, but with an equal number
of sentences for each pronunciation of each word, generated using
Llama 2-Chat 70B [13]. In creating this dataset, we aimed to follow
two principles. First, the dataset must be balanced: we wanted an
equal number of sentences for each pronunciation of each homograph,
which should be stratified evenly across train and test sets. Second, the
dataset must be diverse: for each pronunciation of each homograph,
as many word senses as possible should be captured, and the word
should appear in as many domains and play as many different roles
in a sentence as possible. The resulting dataset contains 10 sentences
per pronunciation per homograph, for a total of 3,260 sentences.

5. EXPERIMENTS
5.1. Configurations
Model parameters. For the TN input stream in the trunk of our
model, we used character embeddings of size 32. We used 1 stateful
convolutional layer with a channel size of 64, kernel size of 5, dropout
with p = 0.2, and batch normalization [33] with a ReLU activation.
The Bi-LSTM used a hidden size of 128, resulting in an output hidden
state of size 256. For the Transformer and cross-attention modules,
we set the hidden sizes to 256, the number of attention heads to
4, and used dropout with p = 0.1. Feedforward modules in each
task-specific head used linear layers of size 256.
Data. For TN, we used an internal dataset consisting of 37k training,
2k validation, and 750 test sentences. For POS tagging, we used
the Switchboard Dialog Act (SwDA) Corpus (125k sentences) [34]
and an internal dataset of sample responses from a speech assistant
(1k sentences). The original POS tags in the SwDA Corpus were
condensed into the 15 classes described in Section 3.1. We held out
0.5% of the SwDA Corpus each for validation and testing and used
the internal dataset for testing only, for a total of 124k training, 627
validation, and 1.6k test samples. For HD, we used the Wikipedia
dataset from [8] and the Llama 2 dataset described in Section 4.
We held out 10% of the Wikipedia training set for validation and
used its evaluation set as is for testing. For the Llama 2 dataset,
we evenly split the sentences into train and test sets, stratified by
homograph pronunciations, but did not hold out a validation set in
order to maximize usage of its sentences during training. This made
for a total of 15k training, 1.5k validation, and 3.2k test samples.
Training. All experiments were conducted on a single NVIDIA
A100 GPU. We trained our model for 90k iterations (30k iterations
per task) using the AdamW optimizer [35] with learning rate 5e-4 and
β1 = 0.9, β2 = 0.99. The batch size was set to 128, and the learning
rate was decayed to 20% of its value every 16k steps. ALBERT
weights were kept frozen throughout the course of training.
Evaluation. We evaluated TN performance using line accuracy
(whether the predicted normalization exactly matches the ground
truth) and word error rate (WER). For POS tagging, we evaluated
using accuracy, and for HD, we used both micro- and macro-average
accuracy over the homograph pronunciation classes.

5.2. Results
We compare our full multi-task model trained on all three tasks against
task-ablated versions trained only on individual or combinations

10798

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on October 27,2025 at 06:52:49 UTC from IEEE Xplore. Restrictions apply.

Table 1: TN, POS tagging, and HD evaluation results. We show results for the full model trained on all three tasks, as well as versions with
ablated components or that were trained only on individual or sub-combinations of tasks.

Model
TN POS Tagging HD

Line Accuracy WER Accuracy
(SwDA)

Accuracy
(Internal)

Micro
(Wikipedia)

Macro
(Wikipedia)

Micro/Macro
(Llama 2)

Proposed (TN + POS + HD) 86.93 2.40 97.18 89.91 96.84 93.10 93.56
– residual connection for HD 86.00 2.64 97.18 90.38 96.59 92.11 94.79

– ALBERT 84.00 2.84 96.12 87.21 96.28 91.86 92.58

TN + POS 85.07 2.70 97.54 90.98 – – –
TN + HD 85.47 2.87 – – 95.42 89.70 88.77
POS + HD – – 97.19 90.11 96.72 92.40 93.56

TN only 86.53 2.38 – – – – –
POS only – – 97.58 91.30 – – –
HD only – – – – 93.93 86.92 87.48

of two out of three tasks. The task-ablated models have the same
architecture as the full model except for the absence of task-specific
heads for removed tasks, and were trained for 30k iterations per task
(30k iterations for single-task models and 60k iterations for two-task
models). The results are shown in Table 1. Note that for HD, micro-
and macro-average accuracies on the Llama 2 dataset are identical
because all homograph classes have the same number of samples.

Overall, we find that multi-task learning has clear benefits for
performance. When comparing two-task models against single-task
models, we find that HD performance improves significantly when
trained together with either TN or POS tagging. TN performance
drops somewhat when trained together with an additional task, and
POS tagging performance also drops marginally. However, our full
model trained on all three tasks achieves the strongest performance
overall, improving upon or matching the performance of all single-
or two-task models on TN and HD. POS tagging performance drops
slightly compared to the single-task POS tagging model; this mirrors
the results in [23], which found POS tagging to be beneficial to other
tasks but also often harmed by them in MTL. This could be because
POS tagging is a simpler problem than TN or HD that does not
require as much contextual information to solve. However, given that
the performance differences are small, and that TN and HD carry
more practical importance in a TTS front-end, we consider this minor
drop-off to be relatively inconsequential. We also verified that any
differences were not simply due to multi-task models being trained
longer, as we did not find any further performance improvements from
training single- or two-task models for more iterations. Overall, these
results point to the presence of meaningful positive transfer between
the three tasks, validating our hypothesis for the MTL framework.

5.3. Ablation studies
We conducted ablation studies on key components of our model; the
results are shown in the top section of Table 1. When the residual
connection from the final layer of ALBERT to the HD head is re-
moved, HD performance decreases on the Wikipedia dataset, but
improves slightly on the Llama 2 dataset. While this indicates that
the contribution of ALBERT’s final layer embeddings towards HD is
inconclusive, it shows that they can have a positive impact depending
on the setting; more in-depth studies may be needed on how to most
effectively incorporate them into the model. Alternatively, this opens
up the possibility of pruning ALBERT’s weights except for the first
layer, which would make the overall model significantly smaller (at
the cost of a slight drop in TN performance). When ALBERT is
removed from the model altogether, performance on TN and POS
tagging further drop significantly, demonstrating that the syntactical
information in its first layer’s embeddings is crucial for those tasks.

Table 2: HD accuracies of the full multi-task model when trained on
both Wikipedia and Llama 2 datasets vs. only the Wikipedia dataset.

HD Training Data
Wikipedia Llama 2

Micro Macro Micro/Macro

Wikipedia + Llama 2 96.84 93.10 93.56
Wikipedia-only 96.84 92.04 84.54

5.4. Impact of the Llama 2 homograph dataset
We analyzed the impact of our proposed Llama 2 homograph dataset
on HD performance. To do this, we compared versions of our full
multi-task model trained on either only the Wikipedia dataset or both
the Wikipedia and Llama 2 datasets; the TN and POS datasets were
kept constant. We did not experiment with training on the Llama 2
dataset alone due to its relatively small size.

Table 2 shows the micro and macro homograph prediction accu-
racies on the two test sets. For brevity, we do not show results on the
other two tasks because we did not find significant differences. We
see that training on both datasets yields higher accuracies compared to
training on only the Wikipedia dataset. There are small performance
gains on the Wikipedia test set, with a slight improvement in macro-
average accuracy. However, the most significant improvements come
on the Llama 2 test set, with absolute accuracy improvements of
around 9%. Notably, the Wikipedia-only model exhibits a large per-
formance gap between the two test sets, while the model trained on
both datasets achieves similar performance on both. In addition, for
both models, there is a gap between the micro- and macro-average
accuracies on the Wikipedia test set, while the values are identical
on the Llama 2 test set; this reflects the balance (or lack thereof) of
homograph classes in each test set.

6. CONCLUSION
In this paper, we proposed a multi-task model that jointly learns to
solve three tasks that are common components of a text-to-speech
(TTS) front-end: text normalization (TN), part-of-speech (POS) tag-
ging, and homograph disambiguation (HD). We demonstrated the
benefits of multi-task learning in this setting, showing that our full
model trained on all three tasks achieves the strongest overall perfor-
mance compared to models trained on individual or sub-combinations
of two tasks. In addition, we introduced a new HD dataset that con-
tains balanced and diverse sentences for each pronunciation of 162
American English homographs, and showed that it significantly helps
with improving and more accurately measuring HD performance.
These findings may provide valuable insights for future work on
developing more unified TTS front-ends.

10799

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on October 27,2025 at 06:52:49 UTC from IEEE Xplore. Restrictions apply.

7. REFERENCES

[1] Richard Sproat et al., “Normalization of Non-Standard Words,”
Computer Speech & Language, vol. 15, no. 3, pp. 287–333,
2001.

[2] Maël Pouget, Olha Nahorna, Thomas Hueber, and Gérard Bailly,
“Adaptive Latency for Part-of-Speech Tagging in Incremental
Text-to-Speech Synthesis,” in Proc. Interspeech, 2016, pp.
2846–2850.

[3] David Yarowsky, “Homograph Disambiguation in Text-to-
Speech Synthesis,” in Progress in Speech Synthesis, pp. 157–
172. Springer, 1997.

[4] Maximilian Bisani and Hermann Ney, “Joint-Sequence Models
for Grapheme-to-Phoneme Conversion,” Speech Communica-
tion, vol. 50, no. 5, pp. 434–451, 2008.

[5] Richard Sproat and Navdeep Jaitly, “RNN Approaches to Text
Normalization: A Challenge,” arXiv preprint arXiv:1611.00068,
2016.

[6] Hao Zhang et al., “Neural Models of Text Normalization for
Speech Applications,” Computational Linguistics, vol. 45, no.
2, pp. 293–337, 2019.

[7] Courtney Mansfield et al., “Neural Text Normalization with
Subword Units,” in Proceedings of NAACL-HLT, 2019, pp.
190–196.

[8] Kyle Gorman, Gleb Mazovetskiy, and Vitaly Nikolaev, “Im-
proving Homograph Disambiguation with Supervised Machine
Learning,” in Proceedings of LREC, 2018.

[9] Marco Nicolis and Viacheslav Klimkov, “Homograph Disam-
biguation with Contextual Word Embeddings for TTS Systems,”
in Interspeech Workshop on Speech Synthesis (SSW11), 2021.

[10] Alistair Conkie and Andrew Finch, “Scalable Multilingual
Frontend for TTS,” in Proceedings of ICASSP. IEEE, 2020, pp.
6684–6688.

[11] Rich Caruana, “Multitask Learning,” Machine Learning, vol.
28, pp. 41–75, 1997.

[12] Zhenzhong Lan et al., “ALBERT: A Lite BERT for Self-
supervised Learning of Language Representations,” in Pro-
ceedings of ICLR, 2019.

[13] Hugo Touvron et al., “Llama 2: Open Foundation and Fine-
Tuned Chat Models,” arXiv preprint arXiv:2307.09288, 2023.

[14] Daan van Esch and Richard Sproat, “An Expanded Taxonomy
of Semiotic Classes for Text Normalization,” in Proc. Inter-
speech, 2017, pp. 4016–4020.

[15] Richard Sproat, “Multilingual Text Analysis for Text-to-Speech
Synthesis,” Natural Language Engineering, vol. 2, no. 4, pp.
369–380, 1996.

[16] Brian Roark et al., “The OpenGrm Open-Source Finite-State
Grammar Software Libraries,” in Proceedings of the ACL 2012
System Demonstrations, 2012, pp. 61–66.

[17] Richard Sproat and Navdeep Jaitly, “An RNN Model of Text
Normalization,” in Proc. Interspeech, 2017, pp. 754–758.

[18] Jae Hun Ro, Felix Stahlberg, Ke Wu, and Shankar Kumar,
“Transformer-based Models of Text Normalization for Speech
Applications,” arXiv preprint arXiv:2202.00153, 2022.

[19] Shubhi Tyagi, Antonio Bonafonte, Jaime Lorenzo-Trueba, and
Javier Latorre, “Proteno: Text Normalization with Limited Data
for Fast Deployment in Text to Speech Systems,” in Proceedings
of NAACL-HLT: Industry Papers, 2021, pp. 72–79.

[20] Michael Collins, “Discriminative Training Methods for Hidden
Markov Models: Theory and Experiments with Perceptron
Algorithms,” in Proceedings of EMNLP, 2002, pp. 1–8.

[21] Ali Elkahky, Kellie Webster, Daniel Andor, and Emily Pitler,
“A Challenge Set and Methods for Noun-Verb Ambiguity,” in
Proceedings of EMNLP, 2018, pp. 2562–2572.

[22] Bernd Bohnet et al., “Morphosyntactic Tagging with a Meta-
BiLSTM Model over Context Sensitive Token Encodings,” in
Proceedings of ACL, 2018, pp. 2642–2652.

[23] Soravit Changpinyo, Hexiang Hu, and Fei Sha, “Multi-Task
Learning for Sequence Tagging: An Empirical Study,” in Pro-
ceedings of COLING, 2018, pp. 2965–2977.

[24] Ronan Collobert and Jason Weston, “A Unified Architecture
for Natural Language Processing: Deep Neural Networks with
Multitask Learning,” in Proceedings of ICML. PMLR, 2008,
pp. 160–167.

[25] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao,
“Multi-Task Deep Neural Networks for Natural Language Un-
derstanding,” in Proceedings of ACL, 2019, pp. 4487–4496.

[26] Sen Wu, Hongyang R Zhang, and Christopher Ré, “Under-
standing and Improving Information Transfer in Multi-Task
Learning,” in Proceedings of ICLR, 2019.

[27] Shohei Higashiyama, Masao Utiyama, Taro Watanabe, and Ei-
ichiro Sumita, “A Text Editing Approach to Joint Japanese
Word Segmentation, POS Tagging, and Lexical Normaliza-
tion,” in Proceedings of the Seventh Workshop on Noisy User-
Generated Text (W-NUT), 2021, pp. 67–80.

[28] Chen Li and Yang Liu, “Joint POS Tagging and Text Normal-
ization for Informal Text,” in Proceedings of IJCAI, 2015.

[29] Zelin Ying, Chen Li, Yu Dong, Qiuqiang Kong, YuanYuan
Huo, Yuping Wang, and Yuxuan Wang, “A Unified Front-
End Framework for English Text-to-Speech Synthesis,” arXiv
preprint arXiv:2305.10666, 2023.

[30] Ashish Vaswani et al., “Attention is All you Need,” Advances
in Neural Information Processing Systems, vol. 30, 2017.

[31] Ganesh Jawahar, Benoît Sagot, and Djamé Seddah, “What Does
BERT Learn about the Structure of Language?,” in Proceedings
of ACL, 2019, pp. 3651–3657.

[32] Minh-Thang Luong et al., “Multi-task Sequence to Sequence
Learning,” in Proceedings of ICLR, 2016.

[33] Sergey Ioffe and Christian Szegedy, “Batch Normalization: Ac-
celerating Deep Network Training by Reducing Internal Covari-
ate Shift,” in Proceedings of ICML. PMLR, 2015, pp. 448–456.

[34] Daniel Jurafsky, Elizabeth Shriberg, and Debra Biasca, “Switch-
board SWBD-DAMSL Shallow-Discourse-Function Annota-
tion (Coders Manual, Draft 13),” Tech. Rep., University of
Colorado, Institute of Cognitive Science, 97-02, 1997.

[35] Ilya Loshchilov and Frank Hutter, “Decoupled Weight Decay
Regularization,” in Proceedings of ICLR, 2018.

10800

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on October 27,2025 at 06:52:49 UTC from IEEE Xplore. Restrictions apply.

