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Abstract
State-of-the-art audio event detection (AED) systems rely on
supervised learning using strongly labeled data. However, this
dependence severely limits scalability to large-scale datasets
where fine resolution annotations are too expensive to obtain. In
this paper, we propose a small-footprint multiple instance learn-
ing (MIL) framework for multi-class AED using weakly anno-
tated labels. The proposed MIL framework uses audio embed-
dings extracted from a pre-trained convolutional neural network
as input features. We show that by using audio embeddings the
MIL framework can be implemented using a simple DNN with
performance comparable to recurrent neural networks.

We evaluate our approach by training an audio tagging sys-
tem using a subset of AudioSet, which is a large collection of
weakly labeled YouTube video excerpts. Combined with a late-
fusion approach, we improve the F1 score of a baseline audio
tagging system by 17%. We show that audio embeddings ex-
tracted by the convolutional neural networks significantly boost
the performance of all MIL models. This framework reduces
the model complexity of the AED system and is suitable for
applications where computational resources are limited.
Index Terms: audio event detection, weakly-supervised learn-
ing, multiple instance learning

1. Introduction
Increasingly, devices in various settings are equipped with au-
ditory perception capabilities. The inclusion of acoustic signals
as an extra modality brings robustness to a system and offers
improved performance in many tasks. This benefit can be at-
tributed to the omnidirectional nature of acoustic signals which
provides a valuable cue for detecting events in various applica-
tions. For example, [1] analyzed audio signals to monitor the
conditions of industrial tools, and in [2] a water leakage de-
tection system using sound recordings of water pipes was pro-
posed. Such systems are able to run in real-time and at a lower
cost as capturing audio is much less expensive than distributing
specialized physical sensors throughout the environment. In ad-
dition, acoustic signals can provide informational cues that are
hard to or cannot be captured by other modalities. A common
example is the detection of alarms or sirens in a driving scenario
with smart cars. Very often, sources of these warning sounds
may be visually occluded and these events are only detectable
using auditory perception [3][4]. Many of these applications
also have a requirement of real-time operation using low com-
putational resources. This is a major challenge since, unlike hu-
man speech, environmental sounds are much more diverse and
span a wider range of frequencies. Audio events that occur in

these settings are also usually sporadic and corrupted by noise.
Previous works on AED have relied on training models us-

ing a supervised learning paradigm which requires strongly la-
beled data [5][6]. However, given the difficulty and high re-
source requirement of annotating large datasets there are only
a few datasets that are publicly available and are often of lim-
ited size [7][8]. Motivated by this, many recent works have
explored the use of weakly labeled data for training AED sys-
tems. One successful approach is to transform the audio into
time-frequency representations and apply a convolutional re-
current neural network to tag or classify the entire clip [9][10].
These methods, however, are unsuitable for real-time applica-
tions as the recurrent and subsequent pooling layers require the
full clip to be parsed before a decision can be made. In addition,
the complexity and computation time of these models are quite
high. Another approach for learning with weak labels is to treat
segments in an audio clip as a bag of instances and apply mul-
tiple instance learning [11]. The MIL model assumes indepen-
dent labels for each instance and accounts for the uncertainty of
the weak labels by assigning a positive bag label only if there is
at least one positive instance. Evidently, this paradigm is more
suitable for portable applications as the classifier can be applied
to individual instances which is ideal for real-time operation.

In this work, we propose to enhance the framework for
multi-class MIL using convolutional audio embeddings. Differ-
ent from prior works, our proposed architecture addresses the
issue of building low complexity models with a small footprint
for real-time applications. We propose the use of audio em-
beddings as input features and show that by using pre-trained
embeddings the MIL model can be implemented with a simple
DNN architecture. The use of audio embeddings also signifi-
cantly improves AED accuracy compared to random initializa-
tion. Our proposed architecture removes the need for complex
CNN structures or recurrent layers which drastically reduces
model complexity and is suitable for portable applications with
low computational resource and real-time requirements.

2. Multiple Instance Learning
2.1. MIL Framework

The task of detecting audio events using weakly labeled training
data can be formulated as a multiple instance learning problem
[12]. In MIL, labels are assigned to bags of instances without
explicitly specifying the relevance of the label to individual in-
stances. All that is known is one or more instances within the
bag contribute to the bag label. Applying this framework to our
task, we view audio clip i as a bag of instances Bi = {xij}
where each instance xij is an audio segment j of shorter dura-
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tion. We then assign all the labels of the clip to the bag so that
each bag has the label Yi = {yin} where yin = 1 indicates the
presence of audio event n. The goal of the MIL problem is then
to classify labels of unseen bags given only the bag and label
pairs (Bi, Yi) as training data. In this we work we implement
the MIL framework using neural networks.

2.2. MIL using Neural Networks

In our implementation we generate instances by segmenting the
audio clip into non-overlapping 1-second segments and taking
the time-frequency representations. The segment size was cho-
sen as a balance between number of total instances and coverage
of audio events. We use a frame size of 25ms with 10ms shift in
the short-time Fourier transform and integrate the power spec-
trogram into 64 mel-spaced frequency bins. A log-transform is
then applied to the spectrogram. We also use the first delta as
an additional input channel.

Since the spectrogram can be viewed as an image we em-
ploy convolutional layers for feature extraction. We reference
CNN architectures proven to have good performance in the field
of computer vision. Specifically, we use the first three conv
groups from VGG-16 [13] and add two fully-connected layers
of size 3072 and 1024. Batch normalization is added after each
convolutional layer. The ReLU activation function is used in all
layers. As our goal is a multi-label system we apply a sigmoid
activation function and view the outputs as independent poste-
rior probability estimates for each class. We use a reduced ver-
sion of the full VGG model because (1) we are exploring com-
pact models for portable applications and (2) the subset dataset
does not contain enough samples to train large models without
overfitting.

To obtain a prediction for the entire bag we adopt a naı̈ve
approach and assign the label of the maximum scoring instance
to the bag. The motivation behind this is in part due to the fact
that since instances in a continuous audio clip are not i.i.d. many
MIL algorithms are not applicable [11]. However this approach
is still beneficial as it allows us to train an instance classifier
which can be applied in a real-time scenario.

Using this approach, the final bag label is obtained using a
max pooling layer. That is

Ŷi = {ŷin} = {max
j

fn(xij)}

where fn(xij) is the predicted probability of class n on instance
xij .

The multi-class MIL loss can then be defined as simply the
cross entropy loss summed over all the classes, which is

Ji = −
∑

n

(yin log ŷin + (1− yin) log (1− ŷin))

In order to address class imbalance we apply a weight to
the MIL loss proportional to the inverse frequency of each class.
During back-propagation only the gradient from the maximally
scoring instance is calculated and used for updating weights.
An interesting fact is that as each class has its own max pooling
layer, errors originate from different instances between classes.
Figure 1 shows the architecture of the proposed MIL framework
using CNN.

2.3. MIL using Audio Embeddings

Our model infers that for a certain class, the highest scoring
instances are most important and contribute directly to the cor-
responding bag label. The training of the neural network to
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Figure 1: Architecture of MIL using CNN. Back-propagation is
performed along the MAX instance for each class.

identify these important instances is similar to an expectation
maximization (EM) approach. However there are two possi-
ble issues which may result from this model. The first is that
as with most EM methods, system performance highly depends
on the initialization point. With a bad initialization point the
model chooses the wrong instance as being indicative of the
class label and optimizes on irrelevant input. These types of er-
rors would be hard to recover from if there is high variation for
each individual audio event. A second issue is that by using a
max pooling layer over all instances back-propagation will only
propagate through the maximum scoring instance. This may re-
sult in some instances being ignored for most of the training.
While this focus on relevant instances only is the central idea of
MIL, it greatly reduces robustness to noise which occurs inter-
mittently in the audio. We propose that the use of pre-trained
audio embeddings can alleviate the above issues. By using au-
dio embeddings as features we postulate that audio events as
well as noise conditions can be better represented which can
improve the performance of the MIL framework.

Similar to [14] we generate audio embeddings by training
a CNN to give frame-wise predictions of the clip label. The in-
put features are 128-bin log-mel spectrograms computed over
1-second segments of audio by short-time Fourier transform.
We use the clip label as targets for all 1-second segments in the
audio clip. The outputs from the penultimate layer of the CNN
are then extracted and used as input to the MIL framework. We
use the same CNN structure described in the previous section
but add an additional fully-connected layer of size 512 to gen-
erate the final audio embedding. Since frame-wise training of
the instances results in badly labeled data, the final model selec-
tion of the embedding CNN is crucial in generating meaningful
embeddings. We use the maximum of frame-wise predictions as
the predicted clip label and select the CNN model with the best
performance at the clip-level using held-out validation data.

The final MIL system is similar in architecture to the MIL-
CNN but uses audio embeddings as features for each instance.
The convolutional layers are replaced with fully-connected lay-
ers as we no longer deal with images. The best performing sys-
tem has four hidden layers using a ReLU activation function
with layer sizes of 512, 512, 256 and 128. The final architec-
ture of the MIL framework is shown in Figure 2.
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Figure 2: Architecture of MIL using audio embeddings.

3. Dataset & Challenges
3.1. Dataset

We evaluated our models using a subset of Google’s AudioSet
[15]. AudioSet is an extensive collection of 10-second YouTube
clips annotated over a large number of audio events. This
dataset contains 632 audio event classes and over 2 million
sound clips, however as a proof of concept we refer to a sub-
set released by the DCASE 2017 challenge [16].

The challenge subset contains 17 audio event classes di-
vided into two categories : Warning and Vehicle sounds. These
audio events are highly focused on transportation scenarios and
is primed towards evaluating AED systems for self-driving cars,
smart cities and related areas. The subset contains 51,172 sam-
ples which is around 142 hours of audio. The class names and
number of samples per class are shown in Table 1.

Class Name Samp # Class Name Samp #
Warning Sounds Vehicle Sounds

Car alarm 273 Skateboard 1,617
Reversing beeps 337 Bicycle 2,020
Air/Truck horn 407 Train 2,301

Train horn 441 Motorcycle 3,291
Ambulance siren 624 Car passing by 3,724

Screaming 744 Bus 3,745
Civil defense siren 1,506 Truck 7,090

Police siren 2,399 Car 25,744
Fire engine siren 2,399

Table 1: Class labels and number of samples per class.

3.2. Challenges of the Dataset

The main challenge of the dataset is the noisiness of YouTube
data. As clips are user submitted and mostly recorded using
consumer devices in real life environments, audio events are
often far-field and corrupted with a variety of noise, including
human speech, music, wind noise, etc. Another challenge is the
variability of audio events. Even within class, the characteristic
of an audio event can vary drastically. An example of this is the

use of different types of sirens by different regions which would
make it hard to differentiate between ambulance and fire truck
sirens. In short, it is possible that each label type encompasses
all possible global variations of that category.

Finally, the number of samples per class is also highly im-
balanced in the subset dataset. The imbalance ratio of the least
occurring to most occurring class is 1:94. While this issue can
be alleviated through machine learning techniques, the inherent
shortage of information in minority classes may result in bad
generalization of those classes.

4. Experimental Setup and Results
In all experiments we used cross entropy as the loss function and
the Adam optimizer [17] to perform weight updates. To handle
class imbalance the loss function was weighted inversely pro-
portional to the number of samples for each class. For model
selection of the embedding CNN we adopted a clip-level vali-
dation scheme. The posterior class probabilities were averaged
over all instances in a clip and the model with the best clip tag-
ging accuracy was selected to generate audio embeddings.

We compared our MIL framework to an MLP baseline
from the DCASE challenge [16]. The best F1-score achieved
by our MIL system using a CNN architecture on a two-fold
cross-validation setup was 22.4%. Using audio embeddings
as features and only a DNN as classifier the performance im-
proved to 31.4% which is 20.5% absolute improvement from
the DCASE baseline. We compared to an MIL framework
where the DNN classifier is replaced with a 3-layer Bi-LSTM
RNN and found that results were comparable to DNNs. We also
applied late-fusion to models with different hyper-parameters
using a weighted majority voting scheme which improved the
F1-score further to 35.3%. The weights of the voting scheme
were based on model validation accuracy. Finally, we show that
the performance of our MIL framework improves to 46.5% us-
ing embeddings from AudioSet. These embeddings are part of
AudioSet and trained with a CNN architecture from [14] using
the YouTube-8M dataset [18]. Table 2 shows the performance
and parameter number of the different models.

The confusion matrix for the proposed MIL system is
shown in Figure 3. Although there is high confusability in the
Car class, which may be due to the imbalance of labels, the
system is still able to distinguish between classes with relative
accuracy.

Model Prec. Rec. F1 Param #
Development set

Baseline [16] 7.9 17.6 10.9 13K
MIL-CNN 19.6 26.1 22.4 29M

MIL-RNN-Embed 23.7 38.1 29.2 6.5M
MIL-DNN-Embed 25.4 41.3 31.4 700K

Ensemble 28.6 46.0 35.3 -
MIL-DNN-AudioSet 41.9 52.2 46.5 700K

Evaluation set
Baseline [16] 15.0 23.1 18.2 13K

Ensemble 31.6 39.7 35.2 -

Table 2: Comparisons of precision, recall, F1-score (%), and
number of parameters for the various models.
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Figure 3: Confusion matrix for the proposed MIL system.

5. Discussion
While our framework is not state-of-the-art [19], which
achieves a single-model F1-score of 54.2%, a more fair com-
parison would be with models without recurrent layers, such as
[20], which has an F1-score of 49.0%. Even so, a direct compar-
ison is of limited value as our proposed method mainly aims to
address two major issues in deploying AED to real-life scenar-
ios: model complexity and real-time operation. Our proposed
method reduces model complexity by removing the need of re-
current layers and is suitable for applications where computa-
tional resources are limited. Under similar performance condi-
tions the MIL system using DNN reduces the number of param-
eters by a factor of almost 10 compared to a 3-layer Bi-LSTM
RNN. In terms of evaluation runtime, the DNN model is also up
to 5 times faster than RNNs. The DNN model is able to handle
2,500 samples per second compared to 500 samples with RNN
using an NVIDIA GTX-1080 GPU.

In addition, by using independent instance classifiers our
system is able to run in real-time and give running predictions
of audio events. This property is crucial when applying AED in
smart cars as events such as sirens and horns have to be detected
as soon as they occur. With recurrent networks or even CNNs
requiring full length inputs this mode of operation would not be
possible.

Finally, as shown by the gain in performance through the
use of AudioSet embeddings, the MIL system can easily be
improved through transfer learning of other sound events. An
interesting observation from our experiments is that joint opti-
mization of the pre-trained embedding CNN with the MIL loss
did not improve performance much above random initializa-
tion. This shows that audio embeddings already contain rich
acoustic information and can be trained in a task-independent
manner. The separation of embedding and classifier training
means that we can take advantage of additional labels in large-
scale weakly-supervised data and learn embeddings indepen-
dently. However, we also observed that selection of the embed-
ding model is pivotal in the final system performance and not
all embeddings are as useful.

6. Conclusions
In this work we proposed a small-footprint multiple instance
learning framework using deep neural networks for audio
event detection which can be trained using large-scale weakly-
supervised data. We showed that by using pre-trained audio
embeddings we can achieve good performance with a simple
DNN model in an MIL framework. Audio embeddings were ex-
tracted from a CNN trained to give frame-wise predictions for
the weakly labeled data. While the performance of this CNN
is poor, the embeddings generated by this model can be used
as features to drastically improve the performance of an MIL
framework. Further improvements were achieved by using em-
beddings from AudioSet which were trained with more data and
additional labels. We postulate that audio embeddings map data
into an acoustically meaningful high-dimensional space which
is more indicative of audio events. Using these embeddings we
can achieve a good trade-off between model size and perfor-
mance.

In future work, we hope to apply our model to the entire
AudioSet for a truly large-scale weakly-supervised MIL frame-
work. With the introduction of additional data as well as class
labels we expect the audio embeddings to contain richer repre-
sentations which can further improve performance of AED in
smart cars.
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[4] J. Schröder, S. Goetze, V. Grützmacher, and J. Anemüller, “Auto-
matic acoustic siren detection in traffic noise by part-based mod-
els,” in Proc. of the IEEE Int. Conf. on Acoustics, Speech and
Signal Process. (ICASSP), 2013.

[5] J. Portelo, M. Bugalho, I. Trancoso, J. Neto, A. Abad, and A. Ser-
ralheiro, “Non-speech audio event detection,” in Proc. of the IEEE
Int. Conf. on Acoustics, Speech and Signal Process. (ICASSP),
2009.

[6] O. Dikmen and A. Mesaros, “Sound event detection using non-
negative dictionaries learned from annotated overlapping events,”
in Proc. of the IEEE Workshop on Applications of Signal Process.
to Audio and Acoustics (WASPAA), 2013.

[7] J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and taxonomy
for urban sound research,” in Proc. of the ACM Int. Conf. on Mul-
timedia and Expo (ICME), 2014.

[8] A. Mesaros, T. Heittola, and T. Virtanen, “TUT database for
acoustic scene classification and sound event detection,” in Proc.
of the European Signal Process. Conf. (EUSIPCO), 2016.
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