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Abstract
The idea of using a data-driven phoneme confusion matrix
(PCM) to enhance speech recognition and retrieval performance
is not new to the speech community. Although empirical re-
sults show various degrees of improvements brought by intro-
ducing a PCM, the underlying data-driven processes introduced
in most papers are rather ad-hoc and lack rigorous statistical jus-
tifications. In this paper we will focus on the statistical aspects
of PCM generation, propose and justify a novel expectation-
maximization based algorithm for data-driven PCM generation.
We will evaluate the performance of the generated PCMs under
the context of low-resource spoken term detection, with primary
focus on out-of-vocabulary keywords.

Index Terms— Expectation-maximization algorithm, ma-
chine learning, information retrieval, spoken term detection,
out-of-vocabulary words

1. Introduction
A confusion matrix is a generic data structure which serves a
variety of purposes across different fields. In machine learn-
ing, they are commonly known as contingency tables or error
matrices that are used to evaluate the performance of a classi-
fier, where the rows are associated with actual classes and the
columns are associated with predicated classes. In the speech
community, a phoneme confusion matrix (PCM) is used to visu-
alize what types of errors automatic speech recognition (ASR)
systems tend to make by confusing one phoneme with another.

There have been some pieces of work in the past decade that
addressed how the use of a phoneme confusion matrix might
improve the performance in various ASR, spoken document re-
trieval (SDR) and spoken term detection (STD) tasks.

One of the earliest significant work on using a PCM to en-
hance SDR performance can be found in [1], in which Srini-
vasan et al.introduced a probabilistic SDR framework based
on combined word-based indices and phonetic indices. Pho-
netic recognition typically has limited accuracy due to the fact
that certain groups of phones are likely to be confused even
by humans, not to mention by ASR systems. In their work,
a PCM was used to address this issue by bridging gaps be-
tween falsely recognized phoneme sequences and their ground
truths. One major contribution of their work was a formaliza-
tion of the generation of a probabilistic PCM, which has been
inherited in many later works. Another major contribution was
defining a way of estimating probabilistic similarities between
two phoneme sequences, and also some add-ons to the method
which may help achieve better and more realistic estimations.
We will refer to the PCM generation method proposed in [1] as
the conventional PCM generation method.

Following the work of Srinivasan et al.were a couple of
PCM based applications, with less focus on the generation of
PCMs. A similar approach has been presented in [2], but used
only a phoneme based index. The phonetic confusability values
stored in the PCM were used to perform document level ex-
pansion. This was done by considering proxy terms in a target
document that were most confusable with the query term, and
using that proxy term for document scoring.

In the works done in [3] and [4], PCMs were used to en-
hance ASR performance. In [3], a comprehensive comparison
was made between an expert-generated and a data-driven PCM.
In their work, both an expert-generated PCM and a data-driven
PCM were used to generate a phonetic broad class to provide
additional knowledge for the speech recognizer. Their data-
driven PCM was generated the same way as in [1]. This piece
of work also focused on multilingual environments and showed
that data-driven phonetic broad classes significantly outper-
formed expert-generated ones under multilingual environments.
On the other hand, the work presented in [4] sought to use
PCMs to resolve confusions brought by dysarthric speech. In
addition, an ad-hoc way of improving PCM quality was also
discussed, which can be regarded as an advancement compared
to the standard PCM generation technique used in other papers.

An application of PCMs in STD was studied in [5], where
PCMs were generated to resolve the confusions brought by var-
ious dialects of Mandarin Chinese. The authors explored a cou-
ple of ways of collecting potential confusion pairs for PCM gen-
eration, which included the use of 1-best recognition results,
and 1-best or even n-best hypotheses in the confusion networks
(CNs). They were able to generate a better PCM for their STD
tasks by borrowing more information from the CNs. This was
expected because in each segment of the phoneme CNs one may
find more confusion pairs, thus supporting the PCM generation
with more training data, making the PCM less biased. In this
work, search of phoneme sequences was done by using sliding
windows, while in [6] more advanced weighted edit distance
based methods have been investigated, which served as a base-
line in that paper for more complex similarity measures.

An overview of previous work on generating and applying
PCMs in various tasks indicates that PCMs can improve the per-
formance as long as there are phoneme-level confusions. How-
ever, the fundamental PCM generation process has not been the
focus in most applications after [1]. We consider the two-pass
method proposed in [4] that improves the alignment generated
by the dynamic programming algorithm a reasonable way to im-
prove the PCM generation process. Apart from that, there have
been virtually no attempts to refine the PCM generation pro-
cess. Unfortunately the two-pass method failed to rouse enough
attention and hasn’t been widely discussed.
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Our idea came without prior knowledge of the two-pass
method proposed in [4], but shares the same motivations. We
seek to pursue even further than in [4] and propose a novel PCM
generation algorithm based on the expectation-maximization
(EM) framework. In the rest of this paper, we will briefly re-
capitulate the EM framework, elaborate on our EM-based PCM
generation algorithm and discuss some of its properties. We
will evaluate our PCM generation method with a STD task on 4
low-resources languages.

2. EM-based PCM Generation
2.1. Probabilistic Phoneme Confusion Matrix

We will stick to a probabilistic PCM where each row stands for
the truth, i.e. the phoneme in the reference transcription (R),
and each column stands for the hypothesized phoneme (H) pro-
vided by the decoder, such that each entry stores the conditional
probability that hypothesis phH is observed given that the refer-
ence the corresponding phoneme is phR, which is denoted and
computed as:

PphR(phH) = P (phH
hyp

|phR
ref

) =
CphR(phH)

CphR(.)
, (1)

whereCphR
(phH) is the number of times reference phR is sub-

stituted by hypothesis phH , and CphR(.) is the number of sub-
stitution errors associated with the reference phR. We will use
the simplified notation PphR(phH) instead of P (phH

hyp
|phR

ref
). In

particular we define PphR
(phH) to be 0, if phR never appears

in the references. Therefore, the resulting PCM may not be a
full ranked matrix.

A subtle and often overlooked fact is that the role of the
reference and the hypothesis cannot and should not be switched
during the MLE. For example, given the phoneme reference “a
b b b” and the hypothesis “a c d c”, the alignment carried out
by the Viterbi algorithm will regard “c” and “d” as substitution
errors of “b”, but not the other way around. Therefore Pb(c) =
2/3, Pb(d) = 1/3, and of course they sum to 1, but Pc(b) = 0
and Pd(b) = 0, based on this training alignment. Apparently,
as long as we maintain the reference-hypothesis relation, the
quantity CphR(phH) is directional. In some previous work,
this quantity was mistakenly made symmetrical.

2.2. Expectation-maximization Algorithm

The expectation-maximization (EM) algorithm has been thor-
oughly studied and justified in the late 20th century [7] [8] [9],
and has many well-known applications such as estimating the
parameters of a Gaussian Mixture Model for audio signal classi-
fication [10], the Baum-Welch algorithm for learning a Hidden
Markov Model [11], and finding the optimal linear interpolation
weights for hierarchical language models [12]. It is also worth
mentioning that most applications of EM have used maximum-
likelihood estimations (MLE) and are therefore frequentist, al-
though there is also a Bayesian version of the EM algorithm
which performs maximum a posteriori (MAP) estimations.

In general, the EM algorithm can be applied whenever there
is incomplete data that prevents learning (non-hidden) model
parameters in a mathematically tractable manner. It is impor-
tant to point out that the EM algorithm itself is a generic frame-
work for parameter estimation, and its optimization criterion is
application specific. The notion of “incomplete data” is used to

imply that the observable statistics are generated by an underly-
ing hidden process controlled by a set of hidden variables.

It is handy to define the observable data as a random vari-
able X , whose distribution is governed by an underlying pro-
cess; and define the unknown underlying process as another
random variable Y ; thus we have the complete data denoted
by Z = (X,Y ). We use corresponding lower case letters to de-
note instances of each random variable. In addition, we denote
by θ the set of model parameters to be estimated. Thus we have
the log-likelihood of the complete data based on the parameters:

L (θ|Z) = log p(Z|θ) = log p(X,Y |θ). (2)

As an iterative algorithm, EM consists of two steps in each
iteration. In each iteration, we optimize the following auxiliary
function:

Q(θ, θ(t−1)) = EY |X,θ(t−1) log p(X,Y |θ) (3)

where θ(t−1) is the parameters obtained before this iteration,
and θ is the parameters that will be obtained after this iteration.
The expectation (E) step finds the expectation of 2 over poste-
rior distribution of the hidden variable Y given the observable
X and the fixed θ(t−1), while the ensuing maximization (M)
step finds the optimal θ using MLE. Each iteration can be en-
capsulated by the formula:

θ(t) = argmax
θ

{
EY |X,θ(t−1) log p(X,Y |θ)

}
. (4)

As has been proved in many previous works, each iteration is
guaranteed to improve the object function until convergence.

2.3. Hard EM

Before we can unveil how our PCM generation algorithm fits a
general EM framework, it is important to address a variant of
the basic EM algorithm, known as the “hard EM” which differs
from the commonly used (soft) EM algorithms in the E step.

The conceptual difference between soft and hard EM has
been introduced by Segal et al.in the book [13]. In soft EM,
the E step accounts for the probability over all hidden variables,
while in hard EM, the single most likely assignment of the hid-
den variable is selected. Effectively, the hard EM can be encap-
sulated by the formula:

θ(t) = argmax
θ

{
max
Y

[log p(X,Y |θ)|X, θt−1]
}
. (5)

Moreover, it has also been proved in [13] that the hard EM is
also guaranteed to converge to a local optimum.

The adoption of the EM framework is motivated by the fact
that there exists at least one alignment that optimally reflects
how the ASR performs on the speech data, but that optimal
alignment can not be obtained with out having a correspond-
ing optimal PCM that we aim to learn, and vice versa. We only
have the references and the hypotheses, without knowing which
alignment is optimal among the exponentially many ones in the
first place. Instead of exhausting the search space, which is in-
feasible, we can learn a rough PCM from the first round Viterbi
alignments. The rough PCM, though imperfect, can shrink our
search space effectively and allow us to use the Viterbi algo-
rithm to find a better set of phoneme alignments, which will in
turn guide us to a better PCM.

425



To formulate our method in a hard EM framework, we de-
fine our optimization criterion as the mean of the average align-
ment cost of each sentence over the entire speech data. The
average alignment cost is obtained from the Viterbi algorithm,
which is used to find the optimal alignment between a refer-
ence phoneme sequence and a hypothesized phoneme sequence.
Since the optimization criterion is disjoint across sentences, the
minimum overall cost can be obtained by summing up the costs
of the optimal alignments for each sentence. Moreover, the
MLE guarantees that each row of the PCM must sum up to
one, which serves as a natural constraint for the optimization
criterion.

We define the observed data as a set of reference-hypothesis
(ref-hyp) phoneme sequence pairs. This is obtained by trans-
lating the word-based ground truth of the speech data and the
word-based hypotheses generated by the ASR into phoneme se-
quences using a grapheme-to-phoneme (G2P) model [14].

Our hidden data is defined as all the unobserved possible
alignments for all the reference-hypothesis phoneme sequence
pairs. There are a finite number of but exponentially many
possible alignments for each ref-hyp phoneme sequence pair.
Clearly, enumerating through all of them and to obtain an ex-
pected cost is not scalable and even silly because the absolute
majority of those enumerations have extremely low probabili-
ties. This explains why we choose hard EM over soft EM: in
soft EM one needs to find a weighted sum of the average align-
ment costs of all possible phoneme alignments, while in hard
EM we only deal with the most probable alignment.

2.4. Expectation Step

Under a hard EM framework, the E step is effectively carried
out by the Viterbi algorithm, with the cost of each phoneme-
to-phoneme alignment given by the PCM obtained after each
iteration. In particular, the Viterbi algorithm automatically ap-
plies the max operator in Eq. (5). This has also been discussed
in [15] and [16] where the Viterbi algorithm was used. Notice
that the max operator is a general notion; in our case it is imple-
mented with a min operator because our optimization criterion
is a cost function.

To elaborate on how Viterbi implements hard EM from
a microscopic perspective, consider only one pair of ref-hyp
phoneme sequences. There may be multiple unobserved align-
ments upon a substitution error, but the Viterbi algorithm will
calculate the most likely alignment by preferring a particular
alignment over others as the PCM provides numeric estimations
of the probabilities that the ASR system will confuse a phoneme
with other phonemes.

Upon each iteration, the PCM will be updated with a new
set of values, which can be considered as the model parame-
ters θ in the general EM framework. It is important to realize
that our optimization space is not convex, and there might be
multiple optimal PCMs for a particular set of ref-hyp phoneme
sequences. For example, consider the reference sequence ”A X
D” and the hypothesis ”A B C D”. The optimal PCM learned
may either assign Px(B) = 1 or PX(C) = 1. In other words,
as long as the Viterbi algorithm encounters ties, the optimiza-
tion surface may not be convex as the ties introduces indeter-
minacy. However, for larger training sets, this will not pre-
vent learning a PCM that is reasonable enough since ties will
never be dominant enough to affect the relative frequencies. For
phones that appear rarely, however, this could be an issue. To
resolve it, one needs to define rules that always break such ties
in a consistent manner.

2.5. Maximization Step

The M step is rather straight forward both conceptually and
computationally. We estimate the probabilities using MLE, and
the calculation has already been illustrated in Eq. (1).

3. Experiments
3.1. Data and System Descriptions

We will experiment with our generated PCMs on four low-
resource languages: Assamese, Bengali, Haitian and Lao. The
STD tasks are powered by Probabilistic Phonetic Retrieval
(PPR), which we will introduce in section 3.2. Our primary
evaluation metric is Actual Term Weighted Value (ATWV) [17]
on OOV queries, as the scoring for OOV queries particularly
requires better phonetic similarity estimations. For all the de-
tections for a particular query, Expected Count Thresholding
(ECT) proposed in [18] is used to compute a dynamic threshold
deciding which ones are to be scored. This method is optimal
if the scores of the items in the posting list accurately reflect
the probability of relevance. Since the purpose of using better
PCMs is to provide better probabilistic estimations of phonetic
similarity and resolve systematic biases, using PCM on PPR
should improve ATWV. In addition, to prevent over-fitting, we
will use two independent sets of speech data, decoded by the
same recognizer.

Our datasets are provided by the IARPA Babel Program
[19], and we will work under the Limited Language Pack (Lim-
itedLP) condition defined in [17], where OOV words were a
prominent issue. For each language, we had 10 hours of devel-
opment (dev) data and a small part (evalpart1, 5 hours) of the
70-hour evaluation data. Table 1 presents the datasets and the
word error rate (WER) of the decoding results, upon which PPR
was used to run keyword search with various PCMs.

Language Dataset ID (LimitedLP) WER (%)

Assamese IARPA-babel102b-v0.5a conv-dev 60.3
IARPA-babel102b-v0.5a conv-evalpart1 58.7

Bengali IARPA-babel103b-v0.4b conv-dev 63.0
IARPA-babel103b-v0.4b conv-evalpart1 61.3

Haitian IARPA-babel201b-v0.2b conv-dev 59.1
IARPA-babel201b-v0.2b conv-evalpart1 57.7

Lao IARPA-babel203b-v3.1a conv-dev 60.5
IARPA-babel203b-v3.1a conv-evalpart1 56.6

Table 1: Data and ASR Performance

For each dataset, a massive word confusion network
(WCN) [20] was generated with our state-of-the-art ASR sys-
tem introduced in [21]. Therefore the quality of the WCNs was
sufficient for PPR to reflect changes in the retrieval system.

3.2. Probabilistic Phonetic Retrieval (PPR)

We will evaluate our PCM generation in a STD task on low re-
source languages where out-of-vocabulary (OOV) words are the
prominent issue. The STD task is formally defined by NIST in
the OpenKWS14 Evaluation Plan [17]. Our underlying speech-
to-text system, and the STD system based on Probabilistic Pho-
netic Retrieval (PPR) have been introduced in [21].

PPR was proposed to provide OOV handling capabilities
for word-based STD tasks, and has proved to be effective on
four low-resource languages in [21]. The idea is to consider
fuzzy matches during the search, and reward fuzzy matches
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Figure 1: Two PCMs for Assamese. The left panel shows the
PCM obtained after one iteration of the EM algorithm; the right
panel shows the PCM obtained after the algorithm has con-
verged.

with high phonetic similarities to the target. The phonetic sim-
ilarity used in [21] was the Levenshtein distance between the
phoneme sequences of two words. However, this method con-
siders only binary similarities on the phoneme level, which is
equivalent of using a PCM with all diagonal entries being 1 and
other entries being 0. This makes the phonetic similarity calcu-
lation systematically biased, leading to less accurate probabilis-
tic relevance estimations. A better PCM is needed to improve
the phonetic similarity estimation of PPR, and thus improve the
overall retrieval performance.

We will show that our PCMs perform better than the con-
ventional PCMs in terms of improving the OOV scoring quality
of PPR. We will also illustrate that the hard EM based algorithm
enhances the quality of the PCM upon the first couple of iter-
ations, but this is followed by a saturation effect. We propose
ways to avoid over-fitting.

3.3. Probabilistic Phonetic Similarity for Word-based Hy-
potheses

The word-to-word phonetic similarity calculation used in PPR
was defined as the phoneme error rate of the hypothesis com-
pared to the reference. To leverage the information provided
by the PCM, we redefine this similarity as the likelihood that
the target word is recognized as the given word hypothesis. We
further assume that this quantity is consistent with the average
likelihood of the phoneme hypotheses defined in formula 1. In
particular, this is calculated by taking the geometric mean of
the step costs used by the Viterbi algorithm when finding the
optimal alignment between the two phoneme sequences. It is
necessary to take the average likelihood as the joint likelihood
is not directly comparable for hypotheses of different lengths.

Recall that in a probabilistic PCM, each row represents
the probability distribution on how a reference phoneme may
be correctly recognized or incorrectly recognized as other
phonemes. This makes practical sense because our goal is to
learn a PCM that best reflects how the ASR works on a par-
ticular set of speech data, rather than finding a PCM that re-
flects common sense. This is also one of the major differ-
ences between a data-driven matrix and expert-generated ma-
trix. In Fig. 1, we can observe that a data driven PCM may dis-
tribute more probability mass to off-diagonal entries than diag-
onal ones if the ASR systematically mis-recognizes a phoneme
as another. This also makes the phonetic similarity for exact
word matches less than 1, since there is some probability that
the word is mis-recognized as something else. As mentioned
before, the use of PCM provides smoother and better approx-

Figure 2: Ranked phonetic similarities for 5000 randomly sam-
pled word pairs. Using a PCM (right) results in a much
smoother curve than if using binary similarities (left).

Figure 3: The optimization criterion (ordinate) after each itera-
tion of EM (abscissa) for Assamese, Bengali, Haitian and Lao.

imations of phonetic similarity. This can be observed from
Fig. 2.

3.4. Observations on EM-based PCM Generation

What we have observed from the iterations is typical for an EM
algorithm. Table 3 shows the value of the optimization crite-
rion after each iteration before convergence for the four experi-
mented languages. We can observe that the number of iterations
required to converge differs from one language to another. Ben-
gali takes more iterations to converge, which is likely due to the
fact that it has more phonemes than the other three languages.
It is also noticeable that for all four languages, the optimization
criterion does not change significantly after the third iteration.
This observation reminds us that there may be a potential of
over-fitting for PCMs generated after the third iteration of the
EM algorithm. However, a more justified way of validation is
to evaluate the PCM on a validation data and choose the best
number of iterations, and then test it on a different dataset.

3.5. Baselines

Our primary baseline system was the original PPR system
which does not require a PCM, labelled “PPR-original”. It can
be regarded as using a PCM with all diagonal entries being 1
and all others being 0. In order to show that the EM-based PCM
generation algorithm finds better PCMs after each EM iteration
until convergence, we took the PPR system with a PCM gener-
ated after the first iteration of the EM algorithm as a secondary
baseline, labeled “PPR-PCM-1st”. The PCM after the first iter-
ation is equivalent to the PCM generated with the conventional
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data-driven method originally purposed in [1], starting with bi-
nary phoneme-to-phoneme similarities.

We will first show that the secondary baseline outperforms
the primary baseline on OOV queries, which proves that it is
reasonable to apply EM-generated PCMs to a PPR powered
STD system. We will then show that our EM-based algorithm
is capable of improving the quality of the PCMs further from
the conventional method.

3.6. ATWV Improvements with EM-Generated PCMs

For validation purposes, we ran PPR with and without EM gen-
erated PCMs on the dev dataset for the 4 languages. The results
are listed in Table 2, in which the OOV ATWV for each system
is presented first, followed by their relative improvement from
the primary baseline (PPR-original). Apparently the secondary
baseline (PPR-PCM-1st) outperforms the primary baseline, in-
dicating that it is a valid approach to evaluate the quality of a
PCM using PPR. It is obvious that the best ATWVs are achieved
mostly in the second iteration of the PCM algorithm, suggesting
that our EM-based PCM generation is able to find better PCMs
than the conventional method (PPR-PCM-1st). It is also worth
mentioning that the effect of over-fitting is present. Notice that
for Haitian, the PCM obtained upon convergence is not better
than the one obtained after the first iteration. This is expected
because we didn’t assume the training data to be perfect, and
thus the EM algorithm was likely to learn noises in the data.

Assamese Bengali Haitian Lao
PPR-original 0.022363 0.033048 0.02727 0.010701

PPR-PCM-1st 0.025052 0.034658 0.03015 0.011024
+11.9% +4.9% +10.6% +3.0%

PPR-PCM-2nd 0.027737 0.035194 0.03241 0.015402
+24.0% +6.5% +18.8% +43.9%

PPR-PCM-3rd 0.026578 0.035060 0.03241 0.015008
+18.8% +6.1% +18.8% +40.2%

PPR-PCM-4th 0.025896 0.035060 0.03050 0.015008
+15.8% +6.1% +11.8% +40.2%

PPR-PCM-5th 0.025579 0.034926 0.00305 0.014979
+14.4% +5.7% +11.8% +39.9%

PPR-PCM-6th 0.025570 0.034926 0.03012 0.014979
+14.4% +5.7% +10.4% +39.9%

Table 2: Validation results over EM iterations based on ATWVs

Based on the validation results, we tested the selected
PCMs generated from the 2nd iteration of the EM algorithm on
the evalpart1 dataset, and we also present the results obtained
with other PCMs to see if the validation process was effective.
The results are presented in Table 3. Apart from that, we have
also conducted the Wilcoxon signed-rank test [22] and reported
the p-values in Table 4 to check if the selected PPR-PCM-2nd
performs significantly better than the baselines.

The testing results pretty much agreed with what the val-
idation outcomes suggested, and we can conclude that for the
four languages and the underlying systems, the PCMs gener-
ated from the 2nd and 3rd iteration of the EM-based algorithm
provide noticeable improvements over the both the primary and
secondary baseline. In particular, according to the Wilcoxon
signed-rank test, we have enough evidence to claim that on the
given data PPR-PCM-2nd is significantly better than the pri-
mary baseline; we have enough evidence to claim that it is also
significantly better than the secondary baseline on Assamese
and Lao, and some evidence to say the same for Bengali and

Haitian. Apart from that, we can also observe that without val-
idation, the potential of over-fitting is still present and is likely
to occur after the 5th iteration.

Assamese Bengali Haitian Lao
PPR-original 0.043426 0.052504 0.006306 0.016834

PPR-PCM-1st 0.049241 0.055882 0.007273 0.020139
+13.4% +6.4% +15.3% +19.6%

PPR-PCM-2nd 0.053744 0.058999 0.007660 0.022166
+23.8% +12.4% +21.5% +31.7%

PPR-PCM-3rd 0.049453 0.059078 0.007273 0.022233
+14.2% +12.5% +15.3% +32.0%

PPR-PCM-4th 0.049421 0.058808 0.007273 0.022033
+13.8% +12.0% +15.3% +30.8%

PPR-PCM-5th 0.049234 0.058514 0.007079 0.021793
+13.4% +11.4% +12.3% +29.5%

PPR-PCM-6th 0.049008 0.058011 0.007079 0.021793
+12.8% +10.5% +12.3% +29.5%

Table 3: Testing results for the selected PCMs (PPR-PCM-2nd)
on evalpart1

P-value PPR-PCM-2nd
Assamese Bengali Haitian Lao

PPR-original 0.011 0.048 0.021 0.013

PPR-PCM-1st 0.032 0.087 0.068 0.044

Table 4: Wilcoxon Signed Rank test on PPR-PCM-2nd against
the baselines

4. Conclusions
In this paper we have reviewed the EM algorithm and one of
its variants, the hard EM. Based on that, we have introduced
a novel data-driven PCM generation algorithm, demonstrated
why this method fits a general (hard) EM framework with sta-
tistical elaborations and observations on the saturation pattern
of the algorithm and the resulting PCMs. We have rigorously
evaluated our method by applying the generated PCMs in a
challenging STD task on low-resource languages to improve
the OOV ATWV, and the results confirm our hypothesis that
the EM-based algorithm is capable of generating better PCMs
than the conventional method. Apart from that, we have also
shown that our method, like many others, requires validation to
prevent over-fitting. We consider our major contribution in this
paper to be the formulation of the PCM generation method in
an EM framework, thus expanding the applications of machine
learning techniques in spoken language technologies.
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